Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Blood Adv ; 6(14): 4228-4235, 2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1862103


Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare but serious adverse syndrome occurring 5 to 30 days after adenoviral vector COVID-19 vaccination. Therefore, a practical evaluation of clinical assessments and laboratory testing for VITT is needed to prevent significant adverse outcomes as the global use of adenoviral vector vaccines continues. We received the clinical information and blood samples of 156 patients in Canada with a suspected diagnosis of VITT between April and July 2021. The performance characteristics of various diagnostic laboratory tests were evaluated against the platelet factor 4 (PF4)-14C-serotonin release assay (SRA) including a commercial anti-PF4/heparin immunoglobulin G (IgG)/IgA/IgM enzyme immunoassay (EIA, PF4 Enhanced; Immucor), in-house IgG-specific anti-PF4 and anti-PF4/heparin-EIAs, the standard SRA, and the PF4/heparin-SRA. Of those, 43 (27.6%) had serologically confirmed VITT-positive based on a positive PF4-SRA result and 113 (72.4%) were VITT-negative. The commercial anti-PF4/heparin EIA, the in-house anti-PF4-EIA, and anti-PF4/heparin-EIA were positive for all 43 VITT-confirmed samples (100% sensitivity) with a few false-positive results (mean specificity, 95.6%). These immunoassays had specificities of 95.6% (95% confidence interval [CI], 90.0-98.6), 96.5% (95% CI, 91.2-99.0), and 97.4% (95% CI, 92.4-99.5), respectively. Functional tests, including the standard SRA and PF4/heparin-SRA, had high specificities (100%), but poor sensitivities for VITT (16.7% [95% CI, 7.0-31.4]; and 46.2% [95% CI, 26.6-66.6], respectively). These findings suggest EIA assays that can directly detect antibodies to PF4 or PF4/heparin have excellent performance characteristics and may be useful as a diagnostic test if the F4-SRA is unavailable.

COVID-19 Vaccines , COVID-19 , Purpura, Thrombocytopenic, Idiopathic , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Clinical Laboratory Techniques , Heparin , Humans , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Platelet Factor 4 , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/diagnosis
Nature ; 596(7873): 565-569, 2021 08.
Article in English | MEDLINE | ID: covidwho-1356565


Vaccine-induced immune thrombotic thrombocytopaenia (VITT) is a rare adverse effect of COVID-19 adenoviral vector vaccines1-3. VITT resembles heparin-induced thrombocytopaenia (HIT) in that it is associated with platelet-activating antibodies against platelet factor 4 (PF4)4; however, patients with VITT develop thrombocytopaenia and thrombosis without exposure to heparin. Here we sought to determine the binding site on PF4 of antibodies from patients with VITT. Using alanine-scanning mutagenesis5, we found that the binding of anti-PF4 antibodies from patients with VITT (n = 5) was restricted to eight surface amino acids on PF4, all of which were located within the heparin-binding site, and that the binding was inhibited by heparin. By contrast, antibodies from patients with HIT (n = 10) bound to amino acids that corresponded to two different sites on PF4. Biolayer interferometry experiments also revealed that VITT anti-PF4 antibodies had a stronger binding response to PF4 and PF4-heparin complexes than did HIT anti-PF4 antibodies, albeit with similar dissociation rates. Our data indicate that VITT antibodies can mimic the effect of heparin by binding to a similar site on PF4; this allows PF4 tetramers to cluster and form immune complexes, which in turn causes Fcγ receptor IIa (FcγRIIa; also known as CD32a)-dependent platelet activation. These results provide an explanation for VITT-antibody-induced platelet activation that could contribute to thrombosis.

COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Thrombocytopenia/chemically induced , Thrombocytopenia/immunology , Thrombosis/chemically induced , Thrombosis/immunology , Adult , Aged , Amino Acid Sequence , Antibodies/immunology , Binding Sites, Antibody , Female , Heparin/chemistry , Heparin/immunology , Heparin/metabolism , Humans , Kinetics , Male , Middle Aged , Models, Molecular , Platelet Activation , Platelet Factor 4/immunology , Receptors, IgG/immunology