Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335179

ABSTRACT

Background In the general population, illness after infection with the SARS-CoV-2 Omicron variant is less severe compared with previous variants. Data on the disease burden of Omicron in immunocompromised patients are lacking. We investigated the clinical characteristics and outcome of a cohort of immunocompromised patients with COVID-19 caused by Omicron. Methods Solid organ transplant recipients, patients on anti-CD20 therapy, and allogenic hematopoietic stem cell transplantation recipients on immunosuppressive therapy infected with the Omicron variant, were included. Patients were contacted regularly until symptom resolution. Clinical characteristics of consenting patients were collected through their electronic patient files. To identify possible risk factors for hospitalization, a univariate logistic analysis was performed. Results A total of 114 consecutive immunocompromised patients were enrolled. Eighty-nine percent had previously received three mRNA vaccinations. While only one patient died, 23 (20%) required hospital admission for a median of 11 days. A low SARS-CoV-2 IgG antibody response (<300 BAU/mL) at diagnosis, higher age, being a lung transplant recipient, more comorbidities and a higher frailty were associated with hospital admission (all p<0.01). At the end of follow-up, 25% had still not fully recovered. Of the 23 hospitalized patients, 70% had a negative and 92% a low IgG (<300 BAU/mL) antibody response at admission. Sotrovimab was administered to 17 of them, of which one died. Conclusions While the mortality in immunocompromised patients infected with Omicron was low, hospital admission was frequent and the duration of symptoms often prolonged. Besides vaccination, other interventions are needed to limit the morbidity from COVID-19 in immunocompromised patients. Summary COVID-19-associated morbidity and mortality in immunocompromised patients is unknown for the SARS-CoV-2 Omicron variant. This prospective registry, demonstrated low COVID-19-associated mortality in these vulnerable patients. However, morbidity remained substantial. Other interventions to abate COVID-19 severity are needed.

2.
J Allergy Clin Immunol ; 149(6): 1949-1957, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1783444

ABSTRACT

BACKGROUND: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients. OBJECTIVES: We sought to study humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult patients with IEI. METHODS: In a prospective, controlled, multicenter study, 505 patients with IEI (common variable immunodeficiency [CVID], isolated or undefined antibody deficiencies, X-linked agammaglobulinemia, combined B- and T-cell immunodeficiency, phagocyte defects) and 192 controls were included. All participants received 2 doses of the mRNA-1273 COVID-19 vaccine. Levels of severe acute respiratory syndrome coronavirus-2-specific binding antibodies, neutralizing antibodies, and T-cell responses were assessed at baseline, 28 days after first vaccination, and 28 days after second vaccination. RESULTS: Seroconversion rates in patients with clinically mild antibody deficiencies and phagocyte defects were similar to those in healthy controls, but seroconversion rates in patients with more severe IEI, such as CVID and combined B- and T-cell immunodeficiency, were lower. Binding antibody titers correlated well to the presence of neutralizing antibodies. T-cell responses were comparable to those in controls in all IEI cohorts, with the exception of patients with CVID. The presence of noninfectious complications and the use of immunosuppressive drugs in patients with CVID were negatively correlated with the antibody response. CONCLUSIONS: COVID-19 vaccination with mRNA-1273 was immunogenic in mild antibody deficiencies and phagocyte defects and in most patients with combined B- and T-cell immunodeficiency and CVID. Lowest response was detected in patients with X-linked agammaglobulinemia and in patients with CVID with noninfectious complications. The assessment of longevity of immune responses in these vulnerable patient groups will guide decision making for additional vaccinations.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Genetic Diseases, Inborn , Immunologic Deficiency Syndromes , /blood , /therapeutic use , Adult , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Common Variable Immunodeficiency/genetics , Common Variable Immunodeficiency/immunology , Genetic Diseases, Inborn/blood , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Humans , Immunologic Deficiency Syndromes/blood , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-332282

ABSTRACT

Background Vaccines can be less immunogenic in people living with HIV (PLWH), but for SARS-CoV-2 vaccinations this is unknown. Methods and Findings A prospective cohort study to examine the immunogenicity of BNT162b2, mRNA-1273, ChAdOx1-S and Ad26.COV2.S vaccines in adult PLWH, without prior COVID-19, compared to HIV-negative controls. The primary endpoint was the anti-spike SARS-CoV-2 IgG response after mRNA vaccination. Secondary endpoints included the serological response after vector vaccination, anti-SARS-CoV-2 T-cell response and reactogenicity. Between February-September 2021, 1154 PLWH (median age 53 [IQR 44-60], 86% male) and 440 controls (median age 43 [IQR 33-53], 29% male) were included. 884 PLWH received BNT162b2, 100 mRNA-1273, 150 ChAdOx1-S, and 20 Ad26.COV2.S. 99% were on antiretroviral therapy, 98% virally suppressed, and the median CD4+T-cell count was 710 cells/µL [IQR 520-913]. 247 controls received mRNA-1273, 94 BNT162b2, 26 ChAdOx1-S and 73 Ad26.COV2.S. After mRNA vaccination, geometric mean concentration was 1418 BAU/mL in PLWH (95%CI 1322-1523), and after adjustment for age, sex, and vaccine type, HIV-status remained associated with a decreased response (0.607, 95%CI 0.508-0.725). In PLWH vaccinated with mRNA-based vaccines, higher antibody responses were predicted by CD4+T-cell counts 250-500 cells/µL (2.845, 95%CI 1.876-4.314) or >500 cells/µL (2.936, 95%CI 1.961-4.394), whilst a viral load >50 copies/mL was associated with a reduced response (0.454, 95%CI 0.286-0.720). Increased IFN-γ, CD4+, and CD8+T-cell responses were observed after stimulation with SARS-CoV-2 spike peptides in ELISpot and activation induced marker assays, comparable to controls. Reactogenicity was generally mild without vaccine-related SAE. Conclusion After vaccination with BNT162b2 or mRNA-1273, anti-spike SARS-CoV-2 antibody levels were reduced in PLWH. To reach and maintain the same serological responses and vaccine efficacy as HIV-negative controls, additional vaccinations are probably required.

4.
Immun Inflamm Dis ; 10(4): e609, 2022 04.
Article in English | MEDLINE | ID: covidwho-1763241

ABSTRACT

INTRODUCTION: Myxovirus resistance protein 1 (MxA) is a biomarker that is elevated in patients with viral infections. The goal of this study was to evaluate the diagnostic value of MxA in diagnosing COVID-19 infections in the emergency department (ED) patients. METHODS: This was a single-center prospective observational cohort study including patients with a suspected COVID-19 infection. The primary outcome of this study was a confirmed COVID-19 infection by RT-PCR test. MxA was assessed using an enzyme immunoassay on whole blood and receiver operating chart and area under the curve (AUC) analysis was conducted. Sensitivity, specificity, negative predictive value, and positive predictive value of MxA on diagnosing COVID-19 at the optimal cut-off of MxA was determined. RESULTS: In 2021, 100 patients were included. Of these patients, 77 patients had COVID-19 infection and 23 were non-COVID-19. Median MxA level was significantly higher (p < .001) in COVID-19 patients compared to non-COVID-19 patients, respectively 1933 and 0.1 ng/ml. The AUC of MxA on a confirmed COVID-19 infection was 0.941 (95% CI: 0.867-1.000). The optimal cut-off point of MxA was 252 ng/ml. At this cut-off point, the sensitivity of MxA on a confirmed COVID-19 infection was 94% (95% CI: 85%-98%) and the specificity was 91% (95% CI: 72%-99%). CONCLUSION: MxA accurately distinguishes COVID-19 infections from bacterial infections and noninfectious diagnoses in the ED in patients with a suspected COVID-19 infection. If the results can be validated, MxA could improve the diagnostic workup and patient flow in the ED.


Subject(s)
COVID-19 , Orthomyxoviridae , COVID-19/diagnosis , Emergency Service, Hospital , Humans , Myxovirus Resistance Proteins , Prospective Studies
5.
N Engl J Med ; 386(10): 951-963, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1642068

ABSTRACT

BACKGROUND: The Ad26.COV2.S vaccine, which was approved as a single-shot immunization regimen, has been shown to be effective against severe coronavirus disease 2019. However, this vaccine induces lower severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-specific antibody levels than those induced by messenger RNA (mRNA)-based vaccines. The immunogenicity and reactogenicity of a homologous or heterologous booster in persons who have received an Ad26.COV2.S priming dose are unclear. METHODS: In this single-blind, multicenter, randomized, controlled trial involving health care workers who had received a priming dose of Ad26.COV2.S vaccine, we assessed immunogenicity and reactogenicity 28 days after a homologous or heterologous booster vaccination. The participants were assigned to receive no booster, an Ad26.COV2.S booster, an mRNA-1273 booster, or a BNT162b2 booster. The primary end point was the level of S-specific binding antibodies, and the secondary end points were the levels of neutralizing antibodies, S-specific T-cell responses, and reactogenicity. A post hoc analysis was performed to compare mRNA-1273 boosting with BNT162b2 boosting. RESULTS: Homologous or heterologous booster vaccination resulted in higher levels of S-specific binding antibodies, neutralizing antibodies, and T-cell responses than a single Ad26.COV2.S vaccination. The increase in binding antibodies was significantly larger with heterologous regimens that included mRNA-based vaccines than with the homologous booster. The mRNA-1273 booster was most immunogenic and was associated with higher reactogenicity than the BNT162b2 and Ad26.COV2.S boosters. Local and systemic reactions were generally mild to moderate in the first 2 days after booster administration. CONCLUSIONS: The Ad26.COV2.S and mRNA boosters had an acceptable safety profile and were immunogenic in health care workers who had received a priming dose of Ad26.COV2.S vaccine. The strongest responses occurred after boosting with mRNA-based vaccines. Boosting with any available vaccine was better than not boosting. (Funded by the Netherlands Organization for Health Research and Development ZonMw; SWITCH ClinicalTrials.gov number, NCT04927936.).


Subject(s)
/immunology , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Immunization, Secondary , Immunogenicity, Vaccine , Immunoglobulin G/blood , /immunology , Adult , Antibodies, Neutralizing/blood , Female , Humans , Interferon-gamma/blood , Male , Middle Aged , SARS-CoV-2 , Single-Blind Method , T-Lymphocytes/immunology
7.
J Transl Autoimmun ; 4: 100084, 2021.
Article in English | MEDLINE | ID: covidwho-1081861

ABSTRACT

BACKGROUND: Knowledge about COVID-19 infections is expanding, although knowledge about the disease course and antibody formation in patients with an auto-immune disease or immunodeficiency is not fully unraveled yet. It could be hypothesized that immunodeficient patients, due to immunosuppressive drugs or their disease, have a more severe disease course due to their immunocompromised state. However, it could also be hypothesized that some of the immunosuppressive drugs protect against a hyperinflammatory state. METHODS: We collected data on the incidence of COVID-19, disease course and SARS-CoV-2 antibody formation in COVID-19 positive patients in a cohort of patients (n â€‹= â€‹4497) known at the Clinical Immunology outpatient clinic in a tertiary care hospital in the Netherlands. RESULTS: In the first six months of the pandemic, 16 patients were identified with COVID-19, 14 by nasal swab PCR, and 2 patients by SARS-CoV-2 antibodies. Eight patients were admitted to the hospital. SARS-CoV-2 antibodies were measured in 8 patients and were detectable in all, including one patient on B-cell ablative therapy and one patient with Common Variable Immunodeficiency Disorder. CONCLUSION: This study indicates that the disease course differs among immunocompromised patients, independently of (dis)continuation of immunosuppressive drugs. Antibody production for SARS-CoV-2 in immunocompromised patients was shown. More research needs to be conducted to confirm these observations and guidelines regarding (dis)continuation of immunosuppressive drugs in COVID-19 positive immunocompromised patients should be developed.

SELECTION OF CITATIONS
SEARCH DETAIL