Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
EMBO Rep ; 24(5): e57162, 2023 05 04.
Article in English | MEDLINE | ID: covidwho-2269718

ABSTRACT

Throughout the SARS-CoV-2 pandemic, limited diagnostic capacities prevented sentinel testing, demonstrating the need for novel testing infrastructures. Here, we describe the setup of a cost-effective platform that can be employed in a high-throughput manner, which allows surveillance testing as an acute pandemic control and preparedness tool, exemplified by SARS-CoV-2 diagnostics in an academic environment. The strategy involves self-sampling based on gargling saline, pseudonymized sample handling, automated RNA extraction, and viral RNA detection using a semiquantitative multiplexed colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with an analytical sensitivity comparable with RT-qPCR. We provide standard operating procedures and an integrated software solution for all workflows, including sample logistics, analysis by colorimetry or sequencing, and communication of results. We evaluated factors affecting the viral load and the stability of gargling samples as well as the diagnostic sensitivity of the RT-LAMP assay. In parallel, we estimated the economic costs of setting up and running the test station. We performed > 35,000 tests, with an average turnover time of < 6 h from sample arrival to result announcement. Altogether, our work provides a blueprint for fast, sensitive, scalable, cost- and labor-efficient RT-LAMP diagnostics, which is independent of potentially limiting clinical diagnostics supply chains.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Clinical Laboratory Techniques/methods , Pandemics/prevention & control , Sensitivity and Specificity , RNA, Viral/genetics
2.
Viruses ; 14(2)2022 01 27.
Article in English | MEDLINE | ID: covidwho-1667342

ABSTRACT

The hepatitis E virus (HEV) is a major global health problem, leading to large outbreaks in the developing world and chronic infections in the developed world. HEV is a non-enveloped virus, which circulates in the blood in a quasi-enveloped form. The quasi-envelope protects HEV particles from neutralising anti-capsid antibodies in the serum; however, most vaccine approaches are designed to induce an immune response against the HEV capsid. In this study, we explored systemic in vivo administration of a novel synthetic and myotropic Adeno-associated virus vector (AAVMYO3) to express the small HEV phosphoprotein ORF3 (found on quasi-enveloped HEV) in the musculature of mice, resulting in the robust and dose-dependent formation of anti-ORF3 antibodies. Neutralisation assays using the serum of ORF3 AAV-transduced mice showed a modest inhibitory effect on the infection of quasi-enveloped HEV in vivo, comparable to previously characterised anti-ORF3 antibodies used as a control. The novel AAVMYO3 capsid used in this study can serve as a versatile platform for the continued development of vector-based vaccines against HEV and other infectious agents, which could complement traditional vaccines akin to the current positive experience with SARS-CoV-2.


Subject(s)
Dependovirus/genetics , Genetic Vectors , Hepatitis Antibodies/blood , Hepatitis E virus/immunology , Muscles/virology , Viral Proteins/immunology , Absorption, Physiological , Animals , Dependovirus/immunology , Female , Hepatitis Antibodies/immunology , Hepatitis E virus/genetics , Mice , Mice, Inbred BALB C , Viral Proteins/administration & dosage , Viral Proteins/genetics
3.
Viruses ; 12(8)2020 08 07.
Article in English | MEDLINE | ID: covidwho-713633

ABSTRACT

Rapid large-scale testing is essential for controlling the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The standard diagnostic pipeline for testing SARS-CoV-2 presence in patients with an ongoing infection is predominantly based on pharyngeal swabs, from which the viral RNA is extracted using commercial kits, followed by reverse transcription and quantitative PCR detection. As a result of the large demand for testing, commercial RNA extraction kits may be limited and, alternatively, non-commercial protocols are needed. Here, we provide a magnetic bead RNA extraction protocol that is predominantly based on in-house made reagents and is performed in 96-well plates supporting large-scale testing. Magnetic bead RNA extraction was benchmarked against the commercial QIAcube extraction platform. Comparable viral RNA detection sensitivity and specificity were obtained by fluorescent and colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) using a primer set targeting the N gene, as well as RT-qPCR using a primer set targeting the E gene, showing that the RNA extraction protocol presented here can be combined with a variety of detection methods at high throughput. Importantly, the presented diagnostic workflow can be quickly set up in a laboratory without access to an automated pipetting robot.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/virology , Pneumonia, Viral/virology , RNA, Viral/isolation & purification , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Humans , Magnetic Phenomena , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pandemics , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription , SARS-CoV-2 , Sensitivity and Specificity
4.
Sci Transl Med ; 12(556)2020 08 12.
Article in English | MEDLINE | ID: covidwho-688785

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) coronavirus is a major public health challenge. Rapid tests for detecting existing SARS-CoV-2 infections and assessing virus spread are critical. Approaches to detect viral RNA based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) have potential as simple, scalable, and broadly applicable testing methods. Compared to RT quantitative polymerase chain reaction (RT-qPCR)-based methods, RT-LAMP assays require incubation at a constant temperature, thus eliminating the need for sophisticated instrumentation. Here, we tested a two-color RT-LAMP assay protocol for detecting SARS-CoV-2 viral RNA using a primer set specific for the N gene. We tested our RT-LAMP assay on surplus RNA samples isolated from 768 pharyngeal swab specimens collected from individuals being tested for COVID-19. We determined the sensitivity and specificity of the RT-LAMP assay for detecting SARS-CoV-2 viral RNA. Compared to an RT-qPCR assay using a sensitive primer set, we found that the RT-LAMP assay reliably detected SARS-CoV-2 RNA with an RT-qPCR cycle threshold (CT) number of up to 30, with a sensitivity of 97.5% and a specificity of 99.7%. We also developed a swab-to-RT-LAMP assay that did not require a prior RNA isolation step, which retained excellent specificity (99.5%) but showed lower sensitivity (86% for CT < 30) than the RT-LAMP assay. In addition, we developed a multiplexed sequencing protocol (LAMP-sequencing) as a diagnostic validation procedure to detect and record the outcome of RT-LAMP reactions.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , COVID-19 , Colorimetry/methods , Colorimetry/statistics & numerical data , Coronavirus Infections/epidemiology , Coronavirus Nucleocapsid Proteins , Humans , Molecular Diagnostic Techniques/statistics & numerical data , Nucleic Acid Amplification Techniques/statistics & numerical data , Nucleocapsid Proteins/genetics , Pandemics , Phosphoproteins , Pneumonia, Viral/epidemiology , RNA, Viral/genetics , RNA, Viral/isolation & purification , RNA-Seq , SARS-CoV-2 , Sensitivity and Specificity , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL