Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
Preprint in English | medRxiv | ID: ppmedrxiv-22276319


BackgroundThe management of Covid-19 outbreaks presented particular challenges in the prison setting. In this study we describe the results from the implementation of a serial mass testing approach in two adult prisons in northern England. The overall aim was to examine the epidemiology of Covid-19 outbreaks in prisons and help inform public health policy and practice during the pandemic. MethodsRepeat mass testing was offered to all eligible staff and residents in a womens (nresidents=239; nstaff=246) and a mens (nresidents=703; nstaff=340) prison in February and March 2021 at days 0, 7 and 28 after Covid-19 outbreaks were declared. Positive swab samples were sent for viral whole genome sequencing by COG-UK. FindingsParticipation in at least one testing round ranged from a low of 67% of staff in the mens prison to a high of 98% of residents in the womens prison. The largest outbreak, in the mens prison (261 cases in residents and 37 cases in staff), continued to see new cases identified at the last testing round on day 28. Test positivity in residents of both prisons was significantly lower (p<0.05) at day 28 than on preceding test days, but no significant difference was observed for staff (p>0.05). Epidemiological data in conjunction with sequencing information provided evidence for multiple introductions of the SARS-CoV-2 virus from the local community into the prisons, with transmission identified both within wings and between wings among residents and staff. Two distinct SARS-CoV-2 lineages were identified in the womens and mens prisons, B.1.177 and B.1.17, respectively. ConclusionsDuring a Covid-19 outbreak, timely implementation of a whole prison testing regime can serve to inform a targeted approach to infection prevention and control by identifying the true extent of disease transmission in all (including asymptomatic) individuals. Staff, in particular, should be tested regularly and testing uptake should be as high as possible to minimise the risk of infection incursion. Ensuring high testing uptake across all testing rounds remains a challenge.

Preprint in English | medRxiv | ID: ppmedrxiv-22270799


IntroductionViral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. MethodsWe conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data-collection period, followed by intervention periods comprising 8 weeks of rapid (<48h) and 4 weeks of longer-turnaround (5-10 day) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital onset COVID-19 infections (HOCIs; detected [≥]48h from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on incidence of probable/definite hospital-acquired infections (HAIs) was evaluated. ResultsA total of 2170 HOCI cases were recorded from October 2020-April 2021, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (IRR 1.60, 95%CI 0.85-3.01; P=0.14) or rapid (0.85, 0.48-1.50; P=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8% and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2% and 11.6% of cases where the report was returned. In a per-protocol sensitivity analysis there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. ConclusionWhile we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days.

Preprint in English | medRxiv | ID: ppmedrxiv-22269279


SARS-CoV-2 emerged in the UK in January 2020 and the Government introduced national lockdowns and regional tiers to control virus transmission. As the outbreak continued, new variants were detected. We analysed spatio-temporal dynamics of positive tests for COVID-19 on Teesside, UK throughout 2020, in relation to: socio-economic deprivation, weather, and Government interventions. We used a combination of disease mapping and mixed-effect modelling to investigate the dynamics of positive tests from two sampling strategies and the spread of particular variants of the virus as they emerged on Teesside. SARS-CoV-2 spread was related to the extent of social deprivation, lockdown interventions and weather. SARS-CoV-2 spread faster in some lineages than others, with positive tests related to levels of socio-economic deprivation. The interventions appeared to have different effects in the two waves of disease, and were associated with reduced numbers of records in the first wave, but having no effect during the second. ARTICLE SUMMARY LINERegional spread of SARS-CoV-2 is dependent on weather, socio-economic and mandatory lockdowns, but the effectiveness of the latter varies with virus lineage.

Preprint in English | medRxiv | ID: ppmedrxiv-21268323


The Office for National Statistics COVID-19 Infection Survey is a large household-based surveillance study based in the United Kingdom. Here, we report on the epidemiological and evolutionary dynamics of SARS-CoV-2 determined by analysing sequenced samples collected up until 13th November 2021. We observed four distinct sweeps or partial-sweeps, by lineages B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta, and finally AY.4.2, a sublineage of B.1.617.2, with each sweeping lineage having a distinct growth advantage compared to their predecessors. Evolution was characterised by steady rates of evolution and increasing diversity within lineages, but with step increases in divergence associated with each sweeping major lineage, leading to a faster overall rate of evolution and fluctuating levels of diversity. These observations highlight the value of viral sequencing integrated into community surveillance studies to monitor the viral epidemiology and evolution of SARS-CoV-2, and potentially other pathogens, particularly as routine PCR testing is phased out or in settings where large-scale sequencing is not feasible.