Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294830

ABSTRACT

Background Approximately 67% of U.S. households have pets. Limited data are available on SARS-CoV-2 in pets. We assessed SARS-CoV-2 infection in pet cohabitants as a sub-study of an ongoing COVID-19 household transmission investigation. Methods Mammalian pets from households with ≥1 person with laboratory-confirmed COVID-19 were eligible for inclusion from April–May 2020. Demographic/exposure information, oropharyngeal, nasal, rectal, and fur swabs, feces, and blood were collected from enrolled pets and tested by rRT-PCR and virus neutralization assays. Findings We enrolled 37 dogs and 19 cats from 34 of 41 eligible households. All oropharyngeal, nasal, and rectal swabs tested negative by rRT-PCR;one dog’s fur swabs (2%) tested positive by rRT-PCR at the first animal sampling. Among 47 pets with serological results from 30 households, eight (17%) pets (4 dogs, 4 cats) from 6 (20%) households had detectable SARS-CoV-2 neutralizing antibodies. In households with a seropositive pet, the proportion of people with laboratory-confirmed COVID-19 was greater (median 79%;range: 40–100%) compared to households with no seropositive pet (median 37%;range: 13–100%) (p=0.01). Thirty-three pets with serologic results had frequent daily contact (≥1 hour) with the human index patient before the person’s COVID-19 diagnosis. Of these 33 pets, 14 (42%) had decreased contact with the human index patient after diagnosis and none (0%) were seropositive;of the 19 (58%) pets with continued contact, 4 (21%) were seropositive. Interpretations Seropositive pets likely acquired infection from humans, which may occur more frequently than previously recognized. People with COVID-19 should restrict contact with animals. Funding Centers for Disease Control and Prevention, U.S. Department of Agriculture

2.
Non-conventional in English | [Unspecified Source], Grey literature | ID: grc-750514

ABSTRACT

Evidence-based public health approaches that minimize the introduction and spread of new SARS-CoV-2 transmission clusters are urgently needed in the United States and other countries struggling with expanding epidemics. Here we analyze 247 full-genome SARS-CoV-2 sequences from two nearby communities in Wisconsin, USA, and find surprisingly distinct patterns of viral spread. Dane County had the 12th known introduction of SARS-CoV-2 in the United States, but this did not lead to descendant community spread. Instead, the Dane County outbreak was seeded by multiple later introductions, followed by limited community spread. In contrast, relatively few introductions in Milwaukee County led to extensive community spread. We present evidence for reduced viral spread in both counties, and limited viral transmission between counties, following the statewide Safer-at-Home public health order, which went into effect 25 March 2020. Our results suggest that early containment efforts suppressed the spread of SARS-CoV-2 within Wisconsin.

3.
Clin Infect Dis ; 73(7): 1805-1813, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455252

ABSTRACT

BACKGROUND: The evidence base for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is nascent. We sought to characterize SARS-CoV-2 transmission within US households and estimate the household secondary infection rate (SIR) to inform strategies to reduce transmission. METHODS: We recruited patients with laboratory-confirmed SARS-CoV-2 infection and their household contacts in Utah and Wisconsin during 22 March 2020-25 April 2020. We interviewed patients and all household contacts to obtain demographics and medical histories. At the initial household visit, 14 days later, and when a household contact became newly symptomatic, we collected respiratory swabs from patients and household contacts for testing by SARS-CoV-2 real-time reverse-transcription polymerase chain reaction (rRT-PCR) and sera for SARS-CoV-2 antibodies testing by enzyme-linked immunosorbent assay (ELISA). We estimated SIR and odds ratios (ORs) to assess risk factors for secondary infection, defined by a positive rRT-PCR or ELISA test. RESULTS: Thirty-two (55%) of 58 households secondary infection among household contacts. The SIR was 29% (n = 55/188; 95% confidence interval [CI], 23%-36%) overall, 42% among children (aged <18 years) of the COVID-19 patient and 33% among spouses/partners. Household contacts to COVID-19 patients with immunocompromised conditions and household contacts who themselves had diabetes mellitus had increased odds of infection with ORs 15.9 (95% CI, 2.4-106.9) and 7.1 (95% CI: 1.2-42.5), respectively. CONCLUSIONS: We found substantial evidence of secondary infections among household contacts. People with COVID-19, particularly those with immunocompromising conditions or those with household contacts with diabetes, should take care to promptly self-isolate to prevent household transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Contact Tracing , Family Characteristics , Humans , United States/epidemiology , Wisconsin
4.
Clin Infect Dis ; 73(7): e1841-e1849, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455251

ABSTRACT

BACKGROUND: Improved understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spectrum of disease is essential for clinical and public health interventions. There are limited data on mild or asymptomatic infections, but recognition of these individuals is key as they contribute to viral transmission. We describe the symptom profiles from individuals with mild or asymptomatic SARS-CoV-2 infection. METHODS: From 22 March to 22 April 2020 in Wisconsin and Utah, we enrolled and prospectively observed 198 household contacts exposed to SARS-CoV-2. We collected and tested nasopharyngeal specimens by real-time reverse-transcription polymerase chain reaction (rRT-PCR) 2 or more times during a 14-day period. Contacts completed daily symptom diaries. We characterized symptom profiles on the date of first positive rRT-PCR test and described progression of symptoms over time. RESULTS: We identified 47 contacts, median age 24 (3-75) years, with detectable SARS-CoV-2 by rRT-PCR. The most commonly reported symptoms on the day of first positive rRT-PCR test were upper respiratory (n = 32 [68%]) and neurologic (n = 30 [64%]); fever was not commonly reported (n = 9 [19%]). Eight (17%) individuals were asymptomatic at the date of first positive rRT-PCR collection; 2 (4%) had preceding symptoms that resolved and 6 (13%) subsequently developed symptoms. Children less frequently reported lower respiratory symptoms (21%, 60%, and 69% for <18, 18-49, and ≥50 years of age, respectively; P = .03). CONCLUSIONS: Household contacts with laboratory-confirmed SARS-CoV-2 infection reported mild symptoms. When assessed at a single timepoint, several contacts appeared to have asymptomatic infection; however, over time all developed symptoms. These findings are important to inform infection control, contact tracing, and community mitigation strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Contact Tracing , Fever , Humans , Prospective Studies , Young Adult
5.
Viruses ; 13(9)2021 09 12.
Article in English | MEDLINE | ID: covidwho-1411082

ABSTRACT

Approximately 67% of U.S. households have pets. Limited data are available on SARS-CoV-2 in pets. We assessed SARS-CoV-2 infection in pets during a COVID-19 household transmission investigation. Pets from households with ≥1 person with laboratory-confirmed COVID-19 were eligible for inclusion from April-May 2020. We enrolled 37 dogs and 19 cats from 34 households. All oropharyngeal, nasal, and rectal swabs tested negative by rRT-PCR; one dog's fur swabs (2%) tested positive by rRT-PCR at the first sampling. Among 47 pets with serological results, eight (17%) pets (four dogs, four cats) from 6/30 (20%) households had detectable SARS-CoV-2 neutralizing antibodies. In households with a seropositive pet, the proportion of people with laboratory-confirmed COVID-19 was greater (median 79%; range: 40-100%) compared to households with no seropositive pet (median 37%; range: 13-100%) (p = 0.01). Thirty-three pets with serologic results had frequent daily contact (≥1 h) with the index patient before the person's COVID-19 diagnosis. Of these 33 pets, 14 (42%) had decreased contact with the index patient after diagnosis and none were seropositive; of the 19 (58%) pets with continued contact, four (21%) were seropositive. Seropositive pets likely acquired infection after contact with people with COVID-19. People with COVID-19 should restrict contact with pets and other animals.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Pets/virology , SARS-CoV-2 , Animals , COVID-19/history , COVID-19/transmission , Cats , Dogs , Family Characteristics , History, 21st Century , Humans , Pets/history , Phylogeny , Population Surveillance , RNA, Viral , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , Utah/epidemiology , Viral Zoonoses/epidemiology , Wisconsin/epidemiology
6.
Clin Infect Dis ; 72(11): e761-e767, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1249288

ABSTRACT

BACKGROUND: Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has principally been performed through the use of real-time reverse-transcription polymerase chain reaction testing. Results of such tests can be reported as cycle threshold (Ct) values, which may provide semi-quantitative or indirect measurements of viral load. Previous reports have examined temporal trends in Ct values over the course of a SARS-CoV-2 infection. METHODS: Using testing data collected during a prospective household transmission investigation of outpatient and mild coronavirus disease 2019 cases, we examined the relationships between Ct values of the viral RNA N1 target and demographic, clinical, and epidemiological characteristics collected through participant interviews and daily symptom diaries. RESULTS: We found that Ct values are lowest (corresponding to a higher viral RNA concentration) soon after symptom onset and are significantly correlated with the time elapsed since onset (P < .001); within 7 days after symptom onset, the median Ct value was 26.5, compared with a median Ct value of 35.0 occurring 21 days after onset. Ct values were significantly lower among participants under 18 years of age (P = .01) and those reporting upper respiratory symptoms at the time of sample collection (P = .001), and were higher among participants reporting no symptoms (P = .05). CONCLUSIONS: These results emphasize the importance of early testing for SARS-CoV-2 among individuals with symptoms of respiratory illness, and allow cases to be identified and isolated when their viral shedding may be highest.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Humans , Prospective Studies , RNA, Viral/genetics , Viral Load
7.
J Infect Dis ; 224(8): 1362-1371, 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1112094

ABSTRACT

BACKGROUND: To better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding and infectivity, we estimated SARS-CoV-2 RNA shedding duration, described participant characteristics associated with the first negative rRT-PCR test (resolution), and determined if replication-competent viruses was recoverable ≥10 days after symptom onset. METHODS: We collected serial nasopharyngeal specimens from 109 individuals with rRT-PCR-confirmed COVID-19 in Utah and Wisconsin. We calculated viral RNA shedding resolution probability using the Kaplan-Meier estimator and evaluated characteristics associated with shedding resolution using Cox proportional hazards regression. We attempted viral culture for 35 rRT-PCR-positive nasopharyngeal specimens collected ≥10 days after symptom onset. RESULTS: The likelihood of viral RNA shedding resolution at 10 days after symptom onset was approximately 3%. Time to shedding resolution was shorter among participants aged <18 years (adjusted hazards ratio [aHR], 3.01; 95% confidence interval [CI], 1.6-5.6) and longer among those aged ≥50 years (aHR, 0.50; 95% CI, .3-.9) compared to participants aged 18-49 years. No replication-competent viruses were recovered. CONCLUSIONS: Although most patients were positive for SARS-CoV-2 for ≥10 days after symptom onset, our findings suggest that individuals with mild to moderate COVID-19 are unlikely to be infectious ≥10 days after symptom onset.


Subject(s)
COVID-19/transmission , RNA, Viral/isolation & purification , SARS-CoV-2/pathogenicity , Virus Shedding , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , Child , Child, Preschool , Contact Tracing , Female , Humans , Male , Middle Aged , Nasopharynx/pathology , Nasopharynx/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Time Factors , Virus Replication , Young Adult
8.
Clin Infect Dis ; 72(4): 682-685, 2021 02 16.
Article in English | MEDLINE | ID: covidwho-1087707

ABSTRACT

In a household study, loss of taste and/or smell was the fourth most reported symptom (26/42 [62%]) among coronavirus disease 2019 (COVID-19) case patients and had the highest positive predictive value (83% [95% confidence interval [CI], 55%-95%) among household contacts. Olfactory and taste dysfunctions should be considered for COVID-19 case identification and testing prioritization.


Subject(s)
Ageusia , COVID-19 , Olfaction Disorders , Humans , SARS-CoV-2 , Smell , Taste
9.
Nat Commun ; 11(1): 5558, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-910229

ABSTRACT

Evidence-based public health approaches that minimize the introduction and spread of new SARS-CoV-2 transmission clusters are urgently needed in the United States and other countries struggling with expanding epidemics. Here we analyze 247 full-genome SARS-CoV-2 sequences from two nearby communities in Wisconsin, USA, and find surprisingly distinct patterns of viral spread. Dane County had the 12th known introduction of SARS-CoV-2 in the United States, but this did not lead to descendant community spread. Instead, the Dane County outbreak was seeded by multiple later introductions, followed by limited community spread. In contrast, relatively few introductions in Milwaukee County led to extensive community spread. We present evidence for reduced viral spread in both counties following the statewide "Safer at Home" order, which went into effect 25 March 2020. Our results suggest patterns of SARS-CoV-2 transmission may vary substantially even in nearby communities. Understanding these local patterns will enable better targeting of public health interventions.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Genome, Viral/genetics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , COVID-19 , Coronavirus Infections/prevention & control , Geography , Humans , Mass Screening/methods , Molecular Epidemiology/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Psychological Distance , Respiratory Protective Devices , SARS-CoV-2 , United States/epidemiology , Wisconsin/epidemiology
10.
Pediatrics ; 147(1)2021 01.
Article in English | MEDLINE | ID: covidwho-839914

ABSTRACT

BACKGROUND AND OBJECTIVES: Limited data exist on severe acute respiratory syndrome coronavirus 2 in children. We described infection rates and symptom profiles among pediatric household contacts of individuals with coronavirus disease 2019. METHODS: We enrolled individuals with coronavirus disease 2019 and their household contacts, assessed daily symptoms prospectively for 14 days, and obtained specimens for severe acute respiratory syndrome coronavirus 2 real-time reverse transcription polymerase chain reaction and serology testing. Among pediatric contacts (<18 years), we described transmission, assessed the risk factors for infection, and calculated symptom positive and negative predictive values. We compared secondary infection rates and symptoms between pediatric and adult contacts using generalized estimating equations. RESULTS: Among 58 households, 188 contacts were enrolled (120 adults; 68 children). Secondary infection rates for adults (30%) and children (28%) were similar. Among households with potential for transmission from children, child-to-adult transmission may have occurred in 2 of 10 (20%), and child-to-child transmission may have occurred in 1 of 6 (17%). Pediatric case patients most commonly reported headache (79%), sore throat (68%), and rhinorrhea (68%); symptoms had low positive predictive values, except measured fever (100%; 95% confidence interval [CI]: 44% to 100%). Compared with symptomatic adults, children were less likely to report cough (odds ratio [OR]: 0.15; 95% CI: 0.04 to 0.57), loss of taste (OR: 0.21; 95% CI: 0.06 to 0.74), and loss of smell (OR: 0.29; 95% CI: 0.09 to 0.96) and more likely to report sore throat (OR: 3.4; 95% CI: 1.04 to 11.18). CONCLUSIONS: Children and adults had similar secondary infection rates, but children generally had less frequent and severe symptoms. In two states early in the pandemic, we observed possible transmission from children in approximately one-fifth of households with potential to observe such transmission patterns.


Subject(s)
COVID-19 Nucleic Acid Testing/trends , COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , COVID-19/diagnosis , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Middle Aged , Utah/epidemiology , Wisconsin/epidemiology , Young Adult
11.
medRxiv ; 2020 Jul 10.
Article in English | MEDLINE | ID: covidwho-664797

ABSTRACT

Evidence-based public health approaches that minimize the introduction and spread of new SARS-CoV-2 transmission clusters are urgently needed in the United States and other countries struggling with expanding epidemics. Here we analyze 247 full-genome SARS-CoV-2 sequences from two nearby communities in Wisconsin, USA, and find surprisingly distinct patterns of viral spread. Dane County had the 12th known introduction of SARS-CoV-2 in the United States, but this did not lead to descendant community spread. Instead, the Dane County outbreak was seeded by multiple later introductions, followed by limited community spread. In contrast, relatively few introductions in Milwaukee County led to extensive community spread. We present evidence for reduced viral spread in both counties, and limited viral transmission between counties, following the statewide Safer-at-Home public health order, which went into effect 25 March 2020. Our results suggest that early containment efforts suppressed the spread of SARS-CoV-2 within Wisconsin.

SELECTION OF CITATIONS
SEARCH DETAIL