Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Crit Care ; 26(1): 148, 2022 05 23.
Article in English | MEDLINE | ID: covidwho-1862142

ABSTRACT

BACKGROUND: A higher-than-usual resistance to standard sedation regimens in COVID-19 patients suffering from acute respiratory distress syndrome (ARDS) has led to the frequent use of the second-line anaesthetic agent ketamine. Simultaneously, an increased incidence of cholangiopathies in mechanically ventilated patients receiving prolonged infusion of high-dose ketamine has been noted. Therefore, the objective of this study was to investigate a potential dose-response relationship between ketamine and bilirubin levels. METHODS: Post hoc analysis of a prospective observational cohort of patients suffering from COVID-19-associated ARDS between March 2020 and August 2021. A time-varying, multivariable adjusted, cumulative weighted exposure mixed-effects model was employed to analyse the exposure-effect relationship between ketamine infusion and total bilirubin levels. RESULTS: Two-hundred forty-three critically ill patients were included into the analysis. Ketamine was infused to 170 (70%) patients at a rate of 1.4 [0.9-2.0] mg/kg/h for 9 [4-18] days. The mixed-effects model revealed a positively correlated infusion duration-effect as well as dose-effect relationship between ketamine infusion and rising bilirubin levels (p < 0.0001). In comparison, long-term infusion of propofol and sufentanil, even at high doses, was not associated with increasing bilirubin levels (p = 0.421, p = 0.258). Patients having received ketamine infusion had a multivariable adjusted competing risk hazard of developing a cholestatic liver injury during their ICU stay of 3.2 [95% confidence interval, 1.3-7.8] (p = 0.01). CONCLUSIONS: A causally plausible, dose-effect relationship between long-term infusion of ketamine and rising total bilirubin levels, as well as an augmented, ketamine-associated, hazard of cholestatic liver injury in critically ill COVID-19 patients could be shown. High-dose ketamine should be refrained from whenever possible for the long-term analgosedation of mechanically ventilated COVID-19 patients.


Subject(s)
COVID-19 , Ketamine , Propofol , Respiratory Distress Syndrome , Bilirubin , COVID-19/complications , Critical Illness , Humans , Hypnotics and Sedatives/adverse effects , Ketamine/adverse effects , Liver , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/chemically induced , Retrospective Studies
3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-307118

ABSTRACT

To investigate the role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell immunity and its relationship with antibody levels and pre-existing immunity against endemic human coronaviruses (huCoV) during disease and beyond, we analyzed patients with recovered (RC, n=178) and active Coronavirus Disease-2019 (COVID-19;AC, n=10) and healthy donors (HD, n=58). Overall, ACs had highest SARS-CoV-2 antibody levels against nucleocapsid (N) and spike (S) proteins but reduced antiviral T-cell immunity, whereas in RCs, antibody levels partially correlated with SARS-CoV-2-specific T-cell frequencies. Interestingly, humoral responses declined throughout convalescence, whereas T-cell immunity remained stable. RCs exhibited polyfunctional, mainly IFN-γ-secreting CD4 + effector memory T-cell responses. Humoral and cellular response towards huCoV strains in RCs with strong SARS-CoV-2 T-cell immunity implies a protective role of pre-existing immunity against huCoV. This study provides essential evidence-based data about stable protective T-cell immunity during disease and recovery which is essential to guide diagnosis and treatment of COVID-19.

4.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327137

ABSTRACT

Hyperinflammation, coagulopathy and immune dysfunction are prominent in patients with severe infections. Extracellular chromatin clearance by plasma DNases suppresses such pathologies in mice but whether severe infection interferes with these pathways is unclear. Here, we show that patients with severe SARS-CoV-2 infection or microbial sepsis exhibit low extracellular DNA clearance capacity associated with the release of the DNase inhibitor actin. Unlike naked DNA degradation (DNase), neutrophil extracellular trap degradation (NETase) was insensitive to G-actin, indicating distinct underlying mechanisms. Functional proteomic profiling of severely ill SARS-CoV-2 patient plasma revealed that patients with high NETase and DNase activities exhibited 18-fold higher survival compared to patients with low activity proteomic profiles. Remarkably, low DNA clearance capacity was also prominent in healthy individuals with chronic inflammation, suggesting that pre-existing inflammatory conditions may increase the risk for mortality upon infection. Hence, functional proteomic profiling illustrates that non-redundant DNA clearance activities protect critically ill patients from mortality, uncovering protein combinations that can accurately predict mortality in critically ill patients.

5.
Crit Care Med ; 50(6): e526-e538, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1621691

ABSTRACT

OBJECTIVES: Extracorporeal membrane oxygenation (ECMO) is a potentially lifesaving procedure in acute respiratory distress syndrome (ARDS) due to COVID-19. Previous studies have shown a high prevalence of clinically silent cerebral microbleeds in patients with COVID-19. Based on this fact, together with the hemotrauma and the requirement of therapeutic anticoagulation on ECMO support, we hypothesized an increased risk of intracranial hemorrhages (ICHs). We analyzed ICH occurrence rate, circumstances and clinical outcome in patients that received ECMO support due to COVID-19-induced ARDS in comparison to viral non-COVID-19-induced ARDS intracerebral hemorrhage. DESIGN: Multicenter, retrospective analysis between January 2010 and May 2021. SETTING: Three tertiary care ECMO centers in Germany and Switzerland. PATIENTS: Two-hundred ten ARDS patients on ECMO support (COVID-19, n = 142 vs viral non-COVID, n = 68). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Evaluation of ICH occurrence rate, parameters of coagulation and anticoagulation strategies, inflammation, and ICU survival. COVID-19 and non-COVID-19 ARDS patients showed comparable disease severity regarding Sequential Organ Failure Assessment score, while the oxygenation index before ECMO cannulation was higher in the COVID group (82 vs 65 mm Hg). Overall, ICH of any severity occurred in 29 of 142 COVID-19 patients (20%) versus four of 68 patients in the control ECMO group (6%). Fifteen of those 29 ICH events in the COVID-19 group were classified as major (52%) including nine fatal cases (9/29, 31%). In the control group, there was only one major ICH event (1/4, 25%). The adjusted subhazard ratio for the occurrence of an ICH in the COVID-19 group was 5.82 (97.5% CI, 1.9-17.8; p = 0.002). The overall ICU mortality in the presence of ICH of any severity was 88%. CONCLUSIONS: This retrospective multicenter analysis showed a six-fold increased adjusted risk for ICH and a 3.5-fold increased incidence of ICH in COVID-19 patients on ECMO. Prospective studies are needed to confirm this observation and to determine whether the bleeding risk can be reduced by adjusting anticoagulation strategies.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Anticoagulants/therapeutic use , COVID-19/complications , COVID-19/therapy , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/methods , Humans , Intracranial Hemorrhages/drug therapy , Intracranial Hemorrhages/epidemiology , Intracranial Hemorrhages/etiology , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Retrospective Studies
6.
Signal Transduct Target Ther ; 6(1): 418, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565706

ABSTRACT

The systemic processes involved in the manifestation of life-threatening COVID-19 and in disease recovery are still incompletely understood, despite investigations focusing on the dysregulation of immune responses after SARS-CoV-2 infection. To define hallmarks of severe COVID-19 in acute disease (n = 58) and in disease recovery in convalescent patients (n = 28) from Hannover Medical School, we used flow cytometry and proteomics data with unsupervised clustering analyses. In our observational study, we combined analyses of immune cells and cytokine/chemokine networks with endothelial activation and injury. ICU patients displayed an altered immune signature with prolonged lymphopenia but the expansion of granulocytes and plasmablasts along with activated and terminally differentiated T and NK cells and high levels of SARS-CoV-2-specific antibodies. The core signature of seven plasma proteins revealed a highly inflammatory microenvironment in addition to endothelial injury in severe COVID-19. Changes within this signature were associated with either disease progression or recovery. In summary, our data suggest that besides a strong inflammatory response, severe COVID-19 is driven by endothelial activation and barrier disruption, whereby recovery depends on the regeneration of the endothelial integrity.


Subject(s)
Antibodies, Viral/blood , Blood Proteins/metabolism , COVID-19/diagnosis , Cytokine Release Syndrome/diagnosis , Endothelium, Vascular/virology , Lymphopenia/diagnosis , SARS-CoV-2/pathogenicity , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Chemokine CXCL10/blood , Chemokine CXCL9/blood , Cluster Analysis , Convalescence , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Disease Progression , Endothelium, Vascular/immunology , Granulocytes/immunology , Granulocytes/virology , Hematopoietic Cell Growth Factors/blood , Hepatocyte Growth Factor/blood , Humans , Intensive Care Units , Interleukin-12 Subunit p40/blood , Interleukin-6/blood , Interleukin-8/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Lectins, C-Type/blood , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/virology , Plasma Cells/immunology , Plasma Cells/virology , Survival Analysis , T-Lymphocytes/immunology , T-Lymphocytes/virology
7.
Blood Adv ; 6(3): 1074-1087, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1551193

ABSTRACT

The high incidence of thrombotic events suggests a possible role of the contact system pathway in COVID-19 pathology. In this study, we determined the altered levels of factor XII (FXII) and its activation products in critically ill patients with COVID-19 in comparison with patients with severe acute respiratory distress syndrome related to the influenza virus (acute respiratory distress syndrome [ARDS]-influenza). Compatible with those data, we found rapid consumption of FXII in COVID-19 but not in ARDS-influenza plasma. Interestingly, the lag phase in fibrin formation, triggered by the FXII activator kaolin, was not prolonged in COVID-19, as opposed to that in ARDS-influenza. Confocal and electron microscopy showed that increased FXII activation rate, in conjunction with elevated fibrinogen levels, triggered formation of fibrinolysis-resistant, compact clots with thin fibers and small pores in COVID-19. Accordingly, clot lysis was markedly impaired in COVID-19 as opposed to that in ARDS-influenza. Dysregulated fibrinolytic system, as evidenced by elevated levels of thrombin-activatable fibrinolysis inhibitor, tissue-plasminogen activator, and plasminogen activator inhibitor-1 in COVID-19 potentiated this effect. Analysis of lung tissue sections revealed widespread extra- and intravascular compact fibrin deposits in patients with COVID-19. A compact fibrin network structure and dysregulated fibrinolysis may collectively contribute to a high incidence of thrombotic events in COVID-19.


Subject(s)
COVID-19 , Thrombosis , Fibrin , Fibrinolysis , Humans , SARS-CoV-2 , Thrombosis/etiology
9.
Eur Heart J Case Rep ; 5(10): ytab386, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1475788

ABSTRACT

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) has been increasingly recognized as a multisystem disease. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect literally any cell type that expresses its target receptor angiotensin-converting enzyme 2. However, COVID-19-associated organ dysfunction is not only mediated by direct viral effects but also by the interaction between the host's immune response, endotheliopathy, and microvascular coagulopathy. It has been proposed that the activation of the complement system plays a central role in the pathophysiology of severe COVID-19 and the associated endotheliopathy. CASE SUMMARY: A 76-year-old male patient with indeterminate cardiogenic shock in the setting of confirmed SARS-CoV-2 infection was admitted to our intensive care unit. Coronary angiography did not reveal a plausible explanation for his symptoms. The patient developed renal failure, neurological symptoms, severe thrombocytopenia, and a Coombs-negative haemolytic anaemia with schistocytes. All together the clinical picture was highly suggestive of a thrombotic microangiopathy (TMA) with microvascular cardiac involvement. Conventional therapeutic strategies including high-dose steroids and seven sessions of therapeutic plasma exchange were all unsuccessful. Interestingly, complement inhibition with Eculizumab as rescue approach led to a rapid clinical and laboratory improvement and the patients were discharged with normalized organ functions at Day 36. CONCLUSION: The aetiology of cardiogenic shock observed in this patient cannot simply be explained by his focal and chronic coronary findings. Although viral myocarditis was not formally excluded, both the clinical features of TMA and the rapid resolution of all clinical signs and symptoms after pharmacological complement inhibition suggest a SARS-CoV-2-driven microangiopathic origin of heart failure.

11.
Swiss Med Wkly ; 151: w20553, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1320610

ABSTRACT

AIMS OF THE STUDY: During the ongoing COVID-19 pandemic, the launch of a large-scale vaccination campaign and virus mutations have hinted at possible changes in transmissibility and the virulence affecting disease progression up to critical illness, and carry potential for future vaccination failure. To monitor disease development over time with respect to critically ill COVID-19 patients, we report near real-time prospective observational data from the RISC-19-ICU registry that indicate changed characteristics of critically ill patients admitted to Swiss intensive care units (ICUs) at the onset of a third pandemic wave. METHODS: 1829 of 3344 critically ill COVID-19 patients enrolled in the international RISC-19-ICU registry as of 31 May 2021 were treated in Switzerland and were included in the present study. Of these, 1690 patients were admitted to the ICU before 1 February 2021 and were compared with 139 patients admitted during the emerging third pandemic wave RESULTS: Third wave patients were a mean of 5.2 years (95% confidence interval [CI] 3.2–7.1) younger (median 66.0 years, interquartile range [IQR] 57.0–73.0 vs 62.0 years, IQR 54.5–68.0; p <0.0001) and had a higher body mass index than patients admitted in the previous pandemic period. They presented with lower SAPS II and APACHE II scores, less need for circulatory support and lower white blood cell counts at ICU admission. P/F ratio was similar, but a 14% increase in ventilatory ratio was observed over time (p = 0.03) CONCLUSION: Near real-time registry data show that the latest COVID-19 patients admitted to ICUs in Switzerland at the onset of the third wave were on average 5 years younger, had a higher body mass index, and presented with lower physiological risk scores but a trend towards more severe lung failure. These differences may primarily be related to the ongoing nationwide vaccination campaign, but the possibility that changes in virus-host interactions may be a co-factor in the age shift and change in disease characteristics is cause for concern, and should be taken into account in the public health and vaccination strategy during the ongoing pandemic. (ClinicalTrials.gov Identifier: NCT04357275).


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Illness , Hospital Mortality , Humans , Intensive Care Units , Pandemics , Prevalence , Prospective Studies , Switzerland/epidemiology
12.
Crit Care ; 25(1): 175, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1243815

ABSTRACT

BACKGROUND: Uncertainty about the optimal respiratory support strategies in critically ill COVID-19 patients is widespread. While the risks and benefits of noninvasive techniques versus early invasive mechanical ventilation (IMV) are intensely debated, actual evidence is lacking. We sought to assess the risks and benefits of different respiratory support strategies, employed in intensive care units during the first months of the COVID-19 pandemic on intubation and intensive care unit (ICU) mortality rates. METHODS: Subanalysis of a prospective, multinational registry of critically ill COVID-19 patients. Patients were subclassified into standard oxygen therapy ≥10 L/min (SOT), high-flow oxygen therapy (HFNC), noninvasive positive-pressure ventilation (NIV), and early IMV, according to the respiratory support strategy employed at the day of admission to ICU. Propensity score matching was performed to ensure comparability between groups. RESULTS: Initially, 1421 patients were assessed for possible study inclusion. Of these, 351 patients (85 SOT, 87 HFNC, 87 NIV, and 92 IMV) remained eligible for full analysis after propensity score matching. 55% of patients initially receiving noninvasive respiratory support required IMV. The intubation rate was lower in patients initially ventilated with HFNC and NIV compared to those who received SOT (SOT: 64%, HFNC: 52%, NIV: 49%, p = 0.025). Compared to the other respiratory support strategies, NIV was associated with a higher overall ICU mortality (SOT: 18%, HFNC: 20%, NIV: 37%, IMV: 25%, p = 0.016). CONCLUSION: In this cohort of critically ill patients with COVID-19, a trial of HFNC appeared to be the most balanced initial respiratory support strategy, given the reduced intubation rate and comparable ICU mortality rate. Nonetheless, considering the uncertainty and stress associated with the COVID-19 pandemic, SOT and early IMV represented safe initial respiratory support strategies. The presented findings, in agreement with classic ARDS literature, suggest that NIV should be avoided whenever possible due to the elevated ICU mortality risk.


Subject(s)
COVID-19/therapy , Critical Illness/therapy , Respiratory Therapy/methods , Respiratory Therapy/statistics & numerical data , Aged , COVID-19/mortality , Critical Illness/mortality , Disease Progression , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Prospective Studies , Registries , Retrospective Studies , Time Factors , Treatment Outcome
14.
Front Med (Lausanne) ; 8: 613951, 2021.
Article in English | MEDLINE | ID: covidwho-1177998

ABSTRACT

Objective: To analyze continuous 1- or 2-channel electroencephalograms (EEGs) of mechanically ventilated patients with coronavirus disease 2019 (COVID-19) with regard to occurrence of epileptiform potentials. Design: Single-center retrospective analysis. Setting: Intensive care unit of Hannover Medical School, Hannover, Germany. Patients: Critically ill COVID-19 patients who underwent continuous routine EEG monitoring (EEG monitor: Narcotrend-Compact M) during sedation. Measurements and Main Results: Data from 15 COVID-19 patients (11 men, four women; age: 19-75 years) were evaluated. Epileptiform potentials occurred in 10 of 15 patients (66.7%). Conclusions: The results of the evaluation regarding the occurrence of epileptiform potentials show that there is an unusually high percentage of cerebral involvement in patients with severe COVID-19. EEG monitoring can be used in COVID-19 patients to detect epileptiform potentials.

16.
Eur J Heart Fail ; 23(3): 468-475, 2021 03.
Article in English | MEDLINE | ID: covidwho-1120306

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19) is a still growing pandemic, causing many deaths and socio-economic damage. Elevated expression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry receptor angiotensin-converting enzyme 2 on cardiac cells of patients with heart diseases may be related to cardiovascular burden. We have thus analysed cardiovascular and inflammatory microRNAs (miRs), sensitive markers of cardiovascular damage, in critically ill, ventilated patients with COVID-19 or influenza-associated acute respiratory distress syndrome (Influenza-ARDS) admitted to the intensive care unit and healthy controls. METHODS AND RESULTS: Circulating miRs (miR-21, miR-126, miR-155, miR-208a, and miR-499) were analysed in a discovery cohort consisting of patients with mechanically-ventilated COVID-19 (n = 18) and healthy controls (n = 15). A validation study was performed in an independent cohort of mechanically-ventilated COVID-19 patients (n = 20), Influenza-ARDS patients (n = 13) and healthy controls (n = 32). In both cohorts, RNA was isolated from serum and cardiovascular disease/inflammatory-relevant miR concentrations were measured by miR-specific TaqMan PCR analyses. In both the discovery and the validation cohort, serum concentration of miR-21, miR-155, miR-208a and miR-499 were significantly increased in COVID-19 patients compared to healthy controls. Calculating the area under the curve using receiver operating characteristic analysis miR-155, miR-208a and miR-499 showed a clear distinction between COVID-19 and Influenza-ARDS patients. CONCLUSION: In this exploratory study, inflammation and cardiac myocyte-specific miRs were upregulated in critically ill COVID-19 patients. Importantly, miR profiles were able to differentiate between severely ill, mechanically-ventilated Influenza-ARDS and COVID-19 patients, indicating a rather specific response and cardiac involvement of COVID-19.


Subject(s)
COVID-19 , Heart Failure , MicroRNAs , Critical Illness , Humans , MicroRNAs/genetics , SARS-CoV-2
17.
Immunity ; 54(2): 340-354.e6, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1071479

ABSTRACT

Cellular and humoral immunity to SARS-CoV-2 is critical to control primary infection and correlates with severity of disease. The role of SARS-CoV-2-specific T cell immunity, its relationship to antibodies, and pre-existing immunity against endemic coronaviruses (huCoV), which has been hypothesized to be protective, were investigated in 82 healthy donors (HDs), 204 recovered (RCs), and 92 active COVID-19 patients (ACs). ACs had high amounts of anti-SARS-CoV-2 nucleocapsid and spike IgG but lymphopenia and overall reduced antiviral T cell responses due to the inflammatory milieu, expression of inhibitory molecules (PD-1, Tim-3) as well as effector caspase-3, -7, and -8 activity in T cells. SARS-CoV-2-specific T cell immunity conferred by polyfunctional, mainly interferon-γ-secreting CD4+ T cells remained stable throughout convalescence, whereas humoral responses declined. Immune responses toward huCoV in RCs with mild disease and strong cellular SARS-CoV-2 T cell reactivity imply a protective role of pre-existing immunity against huCoV.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunity, Cellular/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Humans , Immunity, Humoral/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
18.
19.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L590-L599, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-945036

ABSTRACT

Despite the pandemic status of COVID-19, there is limited information about host risk factors and treatment beyond supportive care. Immunoglobulin G (IgG) could be a potential treatment target. Our aim was to determine the incidence of IgG deficiency and associated risk factors in a cohort of 62 critically ill patients with COVID-19 admitted to two German ICUs (72.6% male, median age: 61 yr). Thirteen (21.0%) of the patients displayed IgG deficiency (IgG < 7 g/L) at baseline (predominant for the IgG1, IgG2, and IgG4 subclasses). Patients who were IgG-deficient had worse measures of clinical disease severity than those with normal IgG levels (shorter duration from disease onset to ICU admission, lower ratio of [Formula: see text] to [Formula: see text], higher Sequential Organ Failure Assessment score, and higher levels of ferritin, neutrophil-to-lymphocyte ratio, and serum creatinine). Patients who were IgG-deficient were also more likely to have sustained lower levels of lymphocyte counts and higher levels of ferritin throughout the hospital stay. Furthermore, patients who were IgG-deficient compared with those with normal IgG levels displayed higher rates of acute kidney injury (76.9% vs. 26.5%; P = 0.001) and death (46.2% vs. 14.3%; P = 0.012), longer ICU [28 (6-48) vs. 12 (3-18) days; P = 0.012] and hospital length of stay [30 (22-50) vs. 18 (9-24) days; P = 0.004]. Univariable logistic regression showed increasing odds of 90-day overall mortality associated with IgG-deficiency (odds ratio 5.14, 95% confidence interval 1.3-19.9; P = 0.018). IgG deficiency might be common in patients with COVID-19 who are critically ill, and warrants investigation as both a marker of disease severity as well as a potential therapeutic target.


Subject(s)
COVID-19/virology , Immunoglobulins/deficiency , SARS-CoV-2/pathogenicity , Severity of Illness Index , Cohort Studies , Female , Humans , Intensive Care Units , Male , Middle Aged , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL