ABSTRACT
Pulmonary artery pseudoaneurysms are uncommon and can cause severe, life-threatening haemoptysis. We present a case of a 74-year-old gentleman who was being treated for COVID-19 pneumonitis and a concomitant segmental pulmonary artery thrombus with conventional treatment and anticoagulation. The patient developed significant haemoptysis during admission. A repeat computed tomography pulmonary angiogram revealed an 8 mm left upper lobe pulmonary artery pseudoaneurysm. Anticoagulation was withheld and the pseudoaneurysm was successfully treated with endovascular embolisation with an Amplatzer® IV plug, leading to resolution of the haemoptysis. To our knowledge this is the first case of a pulmonary artery pseudoaneurysm secondary to COVID-19.
ABSTRACT
Disordered coagulation, endothelial dysfunction, dehydration and immobility contribute to a substantially elevated risk of deep venous thrombosis, pulmonary embolism (PE) and systemic thrombosis in coronavirus disease 2019 (Covid-19). We evaluated the prevalence of pulmonary thrombosis and reported RV (right ventricular) dilatation/dysfunction associated with Covid-19 in a tertiary referral Covid-19 centre. Of 370 patients, positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 39 patients (mean age 62.3 ± 15 years, 56% male) underwent computed tomography pulmonary angiography (CTPA), due to increasing oxygen requirements or refractory hypoxia, not improving on oxygen, very elevated D-dimer or tachycardia disproportionate to clinical condition. Thrombosis in the pulmonary vasculature was found in 18 (46.2%) patients. However, pulmonary thrombosis did not predict survival (46.2% survivors vs 41.7% non-survivors, p = 0.796), but RV dilatation was less frequent among survivors (11.5% survivors vs 58.3% non-survivors, p = 0.002). Over the following month, we observed four Covid-19 patients, who were admitted with high and intermediate-high risk PE, and we treated them with UACTD (ultrasound-assisted catheter-directed thrombolysis), and four further patients, who were admitted with PE up to 4 weeks after recovery from Covid-19. Finally, we observed a case of RV dysfunction and pre-capillary pulmonary hypertension, associated with Covid-19 extensive lung disease. We demonstrated that pulmonary thrombosis is common in association with Covid-19. Also, the thrombotic risk in the pulmonary vasculature is present before and during hospital admission, and continues at least up to four weeks after discharge, and we present UACTD for high and intermediate-high risk PE management in Covid-19 patients.
Subject(s)
COVID-19 , Heart Ventricles , Pulmonary Embolism , Thrombolytic Therapy/methods , Ventricular Dysfunction, Right , COVID-19/blood , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Computed Tomography Angiography/methods , Female , Fibrin Fibrinogen Degradation Products/analysis , Heart Ventricles/diagnostic imaging , Heart Ventricles/pathology , Humans , Hypoxia/etiology , Hypoxia/therapy , Male , Middle Aged , Organ Size , Outcome and Process Assessment, Health Care , Pulmonary Embolism/diagnostic imaging , Pulmonary Embolism/etiology , Pulmonary Embolism/physiopathology , Risk Assessment , Risk Factors , SARS-CoV-2 , Ultrasonography, Interventional/methods , United Kingdom , Ventricular Dysfunction, Right/diagnosis , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/physiopathologySubject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/genetics , Gene-Environment Interaction , Obesity/genetics , Pneumonia, Viral/genetics , Polymorphism, Single Nucleotide , Sepsis/genetics , Smoking/genetics , Body Mass Index , COVID-19 , Case-Control Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Dyslipidemias/epidemiology , Dyslipidemias/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Host-Pathogen Interactions , Humans , Mendelian Randomization Analysis , Obesity/epidemiology , Pandemics , Phenotype , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Sepsis/epidemiology , Sepsis/virology , Severity of Illness Index , Smoking/adverse effects , Smoking/epidemiologyABSTRACT
Marine hard-bottom communities are undergoing severe change under the influence of multiple drivers, notably climate change, extraction of natural resources, pollution and eutrophication, habitat degradation, and invasive species. Monitoring marine biodiversity in such habitats is, however, challenging as it typically involves expensive, non-standardized, and often destructive sampling methods that limit its scalability. Differences in monitoring approaches furthermore hinders inter-comparison among monitoring programs. Here we announce a Marine Biodiversity Observation Network (MBON) consisting of Autonomous Reef Monitoring Structures (ARMS) with the aim to assess the status and changes in benthic fauna with genomic-based methods, notably DNA metabarcoding, in combination with image-based identifications. This article presents the results of a 30-month pilot phase in which we established an operational and geographically expansive ARMS-MBON. The network currently consists of 20 observatories distributed across European coastal waters and the polar regions, in which 134 ARMS have been deployed to date. Sampling takes place annually, either as short-term deployments during the summer or as long-term deployments starting in spring. The pilot phase was used to establish a common set of standards for field sampling, genetic analysis, data management, and legal compliance, which are presented here. We also tested the potential of ARMS for combining genetic and image-based identification methods in comparative studies of benthic diversity, as well as for detecting non-indigenous species. Results show that ARMS are suitable for monitoring hard-bottom environments as they provide genetic data that can be continuously enriched, re-analyzed, and integrated with conventional data to document benthic community composition and detect non-indigenous species. Finally, we provide guidelines to expand the network and present a sustainability plan as part of the European Marine Biological Resource Centre (www.embrc.eu).
ABSTRACT
Numerous observational studies have attempted to identify risk factors for infection with SARS-CoV-2 and COVID-19 disease outcomes. Studies have used datasets sampled from patients admitted to hospital, people tested for active infection, or people who volunteered to participate. Here, we highlight the challenge of interpreting observational evidence from such non-representative samples. Collider bias can induce associations between two or more variables which affect the likelihood of an individual being sampled, distorting associations between these variables in the sample. Analysing UK Biobank data, compared to the wider cohort the participants tested for COVID-19 were highly selected for a range of genetic, behavioural, cardiovascular, demographic, and anthropometric traits. We discuss the mechanisms inducing these problems, and approaches that could help mitigate them. While collider bias should be explored in existing studies, the optimal way to mitigate the problem is to use appropriate sampling strategies at the study design stage.