Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 372
Filter
1.
Oecologia ; 198(3): 645-661, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35279723

ABSTRACT

Epiphyte communities comprise important components of many forest ecosystems in terms of biomass and diversity, but little is known regarding trade-offs that underlie diversity and structure in these communities or the impact that microclimate has on epiphyte trait allocation. We measured 22 functional traits in vascular epiphyte communities across six sites that span a microclimatic gradient in a tropical montane cloud forest region in Costa Rica. We quantified traits that relate to carbon and nitrogen allocation, gas exchange, water storage, and drought tolerance. Functional diversity was high in all but the lowest elevation site where drought likely limits the success of certain species with particular trait combinations. For most traits, variation was explained by relationships with other traits, rather than differences in microclimate across sites. Although there were significant differences in microclimate, epiphyte abundance, and diversity, we found substantial overlap in multivariate trait space across five of the sites. We found significant correlations between functional traits, many of which related to water storage (leaf water content, leaf thickness, hydrenchymal thickness), drought tolerance (turgor loss point), and carbon allocation (specific leaf area, leaf dry matter content). This suite of trait correlations suggests that the epiphyte community has evolved functional strategies along with a drought avoidance versus drought tolerance continuum where leaf succulence emerged as a pivotal overall trait.


Subject(s)
Droughts , Tropical Climate , Ecosystem , Forests , Plant Leaves
2.
Sci Rep ; 9(1): 12049, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31427739

ABSTRACT

Intense femtosecond pulse filamentation in open-air has been utilized for long distance optical communication and remote sensing, but it results in nonlinear-effect driven eye hazards which are not addressed by current eye safety standards. A systematic study of filamentation in atmospheric air was performed using a tunable 100 fs near-infrared laser (1100 nm-2400 nm). While undergoing filamentation, each source wavelength was spectrally broadened resulting in supercontinuum and third harmonic generation in the visible and near-IR spectrum. We record the spectra at the center and fringes of the supercontinuum as it is imaged onto a planar surface. In a full beam collection regime, we report the energy of the sub-1000 nm light generation for source wavelengths from 1100 nm to 1600 nm and compare the energy density to the maximum permissible exposure values under the ANSI Z136.1 laser safety standard.

3.
Br J Dermatol ; 181(4): 691-699, 2019 10.
Article in English | MEDLINE | ID: mdl-31342510

ABSTRACT

BACKGROUND: The role of skin microbiota in acne remains to be fully elucidated. Initial culture-based investigations were hampered by growth rate and selective media bias. Even with less biased genomic methods, sampling, lysis and methodology, the task of describing acne pathophysiology remains challenging. Acne occurs in sites dominated by Cutibacterium acnes (formerly Propionibacterium acnes) and Malassezia species, both of which can function either as commensal or pathogen. OBJECTIVES: This article aims to review the current state of the art of the microbiome and acne. METHODS: The literature regarding the microbiome and acne was reviewed. RESULTS: It remains unclear whether there is a quantitative difference in microbial community distribution, making it challenging to understand any community shift from commensal to pathogenic nature. It is plausible that acne involves (i) change in the distribution of species/strains, (ii) stable distribution with pathogenic alteration in response to internal (intermicrobe) or external stimuli (host physiology or environmental) or (iii) a combination of these factors. CONCLUSIONS: Understanding physiological changes in bacterial species and strains will be required to define their specific roles, and identify any potential intervention points, in acne pathogenesis and treatment. It will also be necessary to determine whether any fungal species are involved, and establish whether they play a significant role. Further investigation using robust, modern analytic tools in longitudinal studies with a large number of participants, may make it possible to determine whether the microbiota plays a causal role, is primarily involved in exacerbation, or is merely a bystander. It is likely that the final outcome will show that acne is the result of complex microbe-microbe and community-host interplay.


Subject(s)
Acne Vulgaris/etiology , Malassezia/immunology , Microbiota/immunology , Propionibacterium acnes/immunology , Skin/microbiology , Humans , Malassezia/pathogenicity , Propionibacterium acnes/pathogenicity , Skin/immunology , Symbiosis/immunology
4.
Plant Dis ; 95(6): 775, 2011 Jun.
Article in English | MEDLINE | ID: mdl-30731925

ABSTRACT

In December 2008, a collection of Citrus spp. in Kerikeri, New Zealand was surveyed for virus and viroid diseases. Symptoms characteristic of virus or viroid infection were not observed other than Citrus tristeza virus (CTV)-associated stem pitting when examined with the bark removed. Total RNA was extracted from bark samples of 273 trees using RLT buffer (Qiagen Inc., Chatsworth, CA) on a KingFisher mL workstation (Thermo Scientific, Waltham, MA) and tested by reverse transcription (RT)-PCR). Samples from three trees, two from sweet orange, Citrus × sinensis (L.) Osbeck (pro sp.) (maxima × reticulate) and one from tangerine, Citrus reticulata Blanco, tested positive for Citrus psorosis virus (CPsV), and two samples, one each from lemon, Citrus × limon (L.) Burm. F. (pro sp.) (medica × aurantifolia) and sweet orange, tested positive for Citrus viroid III (CVd-III) using previously published primers and PCR cycling conditions (2,4) in a one-step RT-PCR system. The 20-µl RT-PCR reaction was done with Verso Reddymix reagents (Thermo Scientific) containing 250 nM of specific primers and 300 µg/µl of bovine serum albumin (Sigma-Aldrich, St. Louis, MO). The CVd-III genome was completed using specific internal primers (forward: 5'-AACGCAGAGAGGGAAAGGGAA-3', reverse: 5'-TAGGGCTACTTCCCGTGGTC-3') with the following cycling conditions: 50°C for 15 min, 94°C for 2 min, then 40 cycles of 94°C for 10 s, 57°C for 30 s, and 68°C for 30 s. The three CPsV amplicons of 419 bp from the RNA-dependent RNA polymerase gene (GenBank Accession Nos. GQ388241 to GQ388243) had 96 to 100% nucleotide identity to each other. A 276-bp (nt position 48 to 323) fragment of the 419-bp sequence was used for comparison with sequences available on GenBank. The three 276-bp CPsV sequences had 89 to 97% nucleotide identity to other CPsV available in GenBank at the time of the analysis. The CVd-III genomes of 291 bp (GenBank Accession Nos. HQ219183 and JF521494) are identical and showed 94 to 99% nucleotide identity to other CVd-III available in GenBank. The presence of CPsV was confirmed in the three samples by a CPsV-specific double-antibody sandwich-ELISA kit (Agritest S.r.l., Valenzano, Italy), while the presence of CVd-III was confirmed only in the lemon sample by r-PAGE (3). The concentration of the viroid in the sweet orange sample may have been below the detection limit of the test. The incidence of the diseases is probably low since CPsV and CVd-III were detected in only a few trees which were planted between 1998 and 2002 at Kerikeri from budwoods of unknown sources imported between the 1970s and 1990s. New Zealand's growing conditions generally do not favor viroid replication in plants, whereas the temperatures may be suitable for CPsV disease. However, symptom characteristics to CPsV and CVd-III have never been observed on the infected trees. This is most likely because of the presence of CTV in the trees (data not shown). CPsV symptoms were thought to have been observed in the 1950s in New Zealand (1) but the causal agent had not been identified. To our knowledge, this is the first molecular and serological evidence of CPsV and the first report of the presence of CVd-III in New Zealand. References: (1) W. A. Fletcher. Orchard. N. Z. 30:33, 1957. (2) T. Ito et al. J. Virol. Methods 106:235, 2002. (3) C. Jeffries and C. James. OEPP/EPPO Bull. 35:125, 2005. (4) S. Martin et al. J. Gen. Virol. 87:3097, 2006.

5.
Opt Express ; 27(3): 2828-2836, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732314

ABSTRACT

Polycrystalline zinc selenide (ZnSe) has been the subject of many nonlinear optics studies for wavelengths under 4.0 µm including sum/difference frequency generation, harmonic generation, and filamentation. In this report, the conversion efficiency of high harmonic generation (HHG) in ZnSe is quantified for mid-infrared wavelengths ranging from 2.7 µm to 8.0 µm. By increasing the fundamental wavelength, we demonstrate that HHG in thick ZnSe targets is limited by the band gap. The high conversion efficiency of mid-infrared to near-infrared light in ZnSe raises concerns of a nonlinear retinal hazard. We contrast the HHG behavior of ZnSe against the observed harmonic generation of calcium fluoride, BK7, and fused silica over the same wavelengths.

6.
J Biol Chem ; 294(2): 559-575, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30429220

ABSTRACT

Rapid expression of critical stress response factors is a key survival strategy for diseased or stressed cells. During cell stress, translation is inhibited, and a pre-existing pool of cytoplasmic mRNA-protein complexes reversibly assembles into cytoplasmic stress granules (SGs). Gle1 is a conserved modulator of RNA-dependent DEAD-box proteins required for mRNA export, translation, and stress responses. Proper Gle1 function is critical as reflected by some human diseases such as developmental and neurodegenerative disorders and some cancers linked to gle1 mutations. However, the mechanism by which Gle1 controls SG formation is incompletely understood. Here, we show that human Gle1 is regulated by phosphorylation during heat shock stress. In HeLa cells, stress-induced Gle1 hyperphosphorylation was dynamic, primarily in the cytoplasmic pool, and followed changes in translation factors. MS analysis identified 14 phosphorylation sites in the Gle1A isoform, six of which clustered in an intrinsically disordered, low-complexity N-terminal region flanking the coil-coiled self-association domain. Of note, two mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), phosphorylated the Gle1A N-terminal domain, priming it for phosphorylation by glycogen synthase kinase 3 (GSK3). A phosphomimetic gle1A6D variant (in which six putative Ser/Thr phosphorylation sites were substituted with Asp) perturbed self-association and inhibited DEAD-box helicase 3 (X-linked) (DDX3) ATPase activity. Expression of alanine-substituted, phosphodeficient GFP-gle1A6A promoted SG assembly, whereas GFP-gle1A6D enhanced SG disassembly. We propose that MAPKs and GSK3 phosphorylate Gle1A and thereby coordinate SG dynamics by altering DDX3 function.


Subject(s)
DEAD-box RNA Helicases/metabolism , Glycogen Synthase Kinase 3/metabolism , Mitogen-Activated Protein Kinases/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Adenosine Triphosphatases/metabolism , Cytoplasmic Granules/metabolism , HeLa Cells , Humans , Phosphorylation , RNA, Messenger/metabolism
7.
Opt Lett ; 43(17): 4196-4199, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30160750

ABSTRACT

Understanding the nonlinear properties of water is essential for laser surgery applications, as well as understanding supercontinuum generation in water. Unfortunately, the nonlinear properties of water for wavelengths longer than 1064 nm are poorly understood. We extend the application of the Z-scan technique in water to determine its nonlinear refractive index (n2) and nonlinear absorption (ß) for wavelengths in the 1150-1400 nm range, where linear absorption is also significant. We observe the wavelength-dependent variation of the nonlinear properties of water around the water absorption band.

8.
Neuropathol Appl Neurobiol ; 44(7): 663-672, 2018 12.
Article in English | MEDLINE | ID: mdl-29533475

ABSTRACT

AIMS: To develop an expert consensus statement regarding appropriate clinical and forensic post mortem neurological imaging. METHODS: An expert panel of clinicians were recruited from registered members of the British Neuropathological Society (BNS) and the International Society of Forensic Radiology and Imaging (ISFRI) with post mortem expertise. Following a focus group meeting, 16 core statements were incorporated into an online modified Delphi survey and each panellist was asked to score their level of agreement. Following the first iteration, two statements that failed to reach consensus were modified and re-rated. Consensus was predefined as 75% agreement across responders. RESULTS: Seventeen experts joined the panel and 12 (70.6%) attended the focus group meeting; 14 (82%) completed both iterations of the survey. Consensus was reached for need of adequate clinical history, multidisciplinary discussion, establishment of special interest groups to discuss cases, gathering further evidence to inform imaging choices, establishment of methods for quality assessment in reporting standards and adequate funding for imaging services. The panel agreed that pathologists should be responsible for neuroimaging referrals, collating results of ancillary tests, and producing the final post mortem report. Areas requiring further discussion include the impact of double reporting, indications for neuroimaging and utilities of three-dimensional printing. CONCLUSION: The BNS/ISFRI statement represents current views of an expert panel of health professionals engaged in post-mortem neuroimaging. We hope this provides a working guideline for less experienced operators, stimulates discussion and highlights the most pressing clinical and research questions.


Subject(s)
Autopsy/methods , Brain/diagnostic imaging , Neuroimaging , Brain/pathology , Consensus , Humans , Magnetic Resonance Imaging , Tomography, X-Ray Computed
9.
Dev Cell ; 43(2): 115-117, 2017 10 23.
Article in English | MEDLINE | ID: mdl-29065301

ABSTRACT

Reporting in this issue of Developmental Cell, Linder et al. (2017) and Martino et al. (2017) reveal in highly complementary studies that Plk1 is recruited to the nuclear pore complex upon mitotic entry, where it acts with Cdk1 to hyperphosphorylate nucleoporin interfaces to promote NPC disassembly and nuclear envelope breakdown.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Mitosis , Nuclear Envelope , Phosphorylation
10.
Oecologia ; 88(4): 521-528, 1991 Dec.
Article in English | MEDLINE | ID: mdl-28312622

ABSTRACT

We investigated the effects of thorns and spines on the feeding of 5 herbivore species in arid Australia. The herbivores were the rabbit (Oryctolagus cuniculus), euro kangaroo (Macropus robustus), red kangaroo (Macropus rufus), sheep (Ovis aries), and cattle (Bos taurus). Five woody plants without spines or thorns and 6 woody plants with thorns were included in the study. The spines and thorns were not found to affect the herbivores' rates of feeding (items ingested/min), but they did reduce the herbivores' rates of biomass ingestion (g-dry/item). The reduction in biomass ingested occurred in two ways: at a given diameter, twigs with spines and thorns had less mass than undefended plants, and the herbivores consumed twigs with smaller diameters on plants with spines and thorns. The relative importance of the two ways that twigs with spines and thorns provided less biomass varied with herbivore body mass. Reduced twig mass was more important for small herbivores, while large herbivores selected smaller diameters. The effectiveness of spines and thorns as anti-herbivore defenses did not vary with the evolutionary history of the herbivores (i.e. native vs. introduced). Spines and thorns mainly affected the herbivores' selection of maximum twig sizes (reducing diameter and mass), but the minimum twig sizes selected were also reduced.

11.
Oecologia ; 117(4): 476-485, 1998 Dec.
Article in English | MEDLINE | ID: mdl-28307672

ABSTRACT

Fog has been viewed as an important source of moisture in many coastal ecosystems, yet its importance for the plants which inhabit these ecosystems is virtually unknown. Here, I report the results of a 3-year investigation of fog inputs and the use of fog water by plants inhabiting the heavily fog inundated coastal redwood (Sequoia sempervirens) forests of northern California. During the study period, 34%, on average, of the annual hydrologic input was from fog drip off the redwood trees themselves (interception input). When trees were absent, the average annual input from fog was only 17%, demonstrating that the trees significantly influence the magnitude of fog water input to the ecosystem. Stable hydrogen and oxygen isotope analyses of water from fog, rain, soil water, and xylem water extracted from the dominant plant species were used to characterize the water sources used by the plants. An isotopic mixing model was employed to then quantify how much fog water each plant used each month during the 3-year study. In summer, when fog was most frequent, ∼19% of the water within S.sempervirens, and ∼66% of the water within the understory plants came from fog after it had dripped from tree foliage into the soil; for S.sempervirens, this fog water input comprised 13-45% of its annual transpiration. For all plants, there was a significant reliance on fog as a water source, especially in summer when rainfall was absent. Dependence on fog as a moisture source was highest in the year when rainfall was lowest but fog inputs normal. Interestingly, during the mild El Niño year of 1993, when the ratio of rainfall to fog water input was significantly higher and fog inputs were lower, both the proportion and coefficient of variation in how much fog water was used by plants increased. An explanation for this is that while fog inputs were lower than normal in this El Niño year, they came at a time when plant demand for water was highest (summer). Therefore, proportional use of fog water by plants increased. The results presented suggest that fog, as a meteorological factor, plays an important role in the water relations of the plants and in the hydrology of the forest. These results demonstrate the importance of understanding the impacts of climatic factors and their oscillations on the biota. The results have important implications for ecologists, hydrologists, and forest managers interested in fog-inundated ecosystems and the plants which inhabit them.

12.
Sci Rep ; 7: 44572, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28294165

ABSTRACT

Optical imaging of fast events and processes is essential for understanding dynamics of complex systems. A bright flash of illuminating light is required to acquire sufficient number of photons for superior image quality. Laser pulses can provide extreme brightness and are typically employed to achieve high temporal resolution; however, the high degree of coherence associated with the lasing process degrades the image quality with speckle formation. Random lasers are low-coherence sources of stimulated emission and do not suffer from speckle, but are rather broadband and have a relatively low output power limiting the scope of their potential applications. In this report, we demonstrate the use of random Raman lasing as a novel imaging light source with unprecedented brightness for a speckle-free and narrowband light source. We showcase the advantages of a random Raman laser to image the nanosecond scale dynamics of cavitation formation in water and quantitatively compare these images to those taken with incoherent fluorescent emission and coherent laser light as illumination source.

13.
Analyst ; 142(7): 1054-1060, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28294227

ABSTRACT

Lipids produced by microalgae are viewed as a potential renewable alternative to fossil fuels, however, significant improvements in productivity are required for microalgal biofuels to become economically feasible. Here we present a method that allows for the use of Raman spectroscopy with poly(dimethylsiloxane) (PDMS) droplet microfluidic devices, which not only overcomes the high Raman background of PDMS, but also achieves pairing of the high-throughput single-cell resolution advantages of droplet microfluidics with the direct, chemically specific, label-free, and non-destructive nature of Raman spectroscopy. The platform was successfully utilized for in situ characterization of microalgal lipid production over time within droplets, paving the way towards high-throughput microalgal lipidomics assays.


Subject(s)
Biofuels , Lipids/analysis , Microalgae/chemistry , Microfluidic Analytical Techniques/instrumentation , Spectrum Analysis, Raman , Chlamydomonas reinhardtii/chemistry , Lipids/biosynthesis
15.
Org Biomol Chem ; 14(24): 5714-20, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-26880344

ABSTRACT

Reversible template-directed micellar-size and shape modulation by virtue of host-guest reversible docking of molecular templates at the micellar-solvent interface was achieved in water. By combining a π-electron deficient bipyridinium-based gemini amphiphile which is capable of binding and aligning with a π-electron rich tri(ethylene glycol)-disubstituted 1,5-diaminonaphthalene, a switchable detergent system which operates through the pH-responsive formation of bisammonium dications was realised. The binding of the 1,5-diaminonaphthalene guest to the bipyridinium-based micellar aggregate superstructure can be actuated by the addition of acid and base. Upon the addition of acid, protonation of the guest forming the dication deactivates molecular recognition with the charged head groups of the micellar aggregate by Coulombic repulsion. This process is completely reversible upon the addition of base, whereby the guest reintercalates into the superstructure -again forming donor-acceptor π-π stacks at the micellar-solvent interface amongst contiguous surfactant head groups. Synchrotron small angle X-ray scattering and dynamic laser light scattering confirm that this form of reversible directionally-templated micellisation results in an oblate spheroid-to-lamellar micelle morphological transition with a stabilising net decrease in the free energy of micellisation of 1.4 kcal mol(-1) per hydrophobic tail.

16.
Adv Biol Regul ; 62: 25-36, 2016 09.
Article in English | MEDLINE | ID: mdl-26776475

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a lethal late onset motor neuron disease with underlying cellular defects in RNA metabolism. In prior studies, two deleterious heterozygous mutations in the gene encoding human (h)Gle1 were identified in ALS patients. hGle1 is an mRNA processing modulator that requires inositol hexakisphosphate (IP6) binding for function. Interestingly, one hGLE1 mutation (c.1965-2A>C) results in a novel 88 amino acid C-terminal insertion, generating an altered protein. Like hGle1A, at steady state, the altered protein termed hGle1-IVS14-2A>C is absent from the nuclear envelope rim and localizes to the cytoplasm. hGle1A performs essential cytoplasmic functions in translation and stress granule regulation. Therefore, we speculated that the ALS disease pathology results from altered cellular pools of hGle1 and increased cytoplasmic hGle1 activity. GFP-hGle1-IVS14-2A>C localized to stress granules comparably to GFP-hGle1A, and rescued stress granule defects following siRNA-mediated hGle1 depletion. As described for hGle1A, overexpression of the hGle1-IVS14-2A>C protein also induced formation of larger SGs. Interestingly, hGle1A and the disease associated hGle1-IVS14-2A>C overexpression induced the formation of distinct cytoplasmic protein aggregates that appear similar to those found in neurodegenerative diseases. Strikingly, the ALS-linked hGle1-IVS14-2A>C protein also rescued mRNA export defects upon depletion of endogenous hGle1, acting in a potentially novel bi-functional manner. We conclude that the ALS-linked hGle1-c.1965-2A>C mutation generates a protein isoform capable of both hGle1A- and hGle1B-ascribed functions, and thereby uncoupled from normal mechanisms of hGle1 regulation.


Subject(s)
Cytoplasmic Granules/metabolism , Mutagenesis, Insertional , Nucleocytoplasmic Transport Proteins/genetics , Point Mutation , Protein Aggregates/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Cytoplasm/metabolism , Cytoplasm/ultrastructure , Cytoplasmic Granules/ultrastructure , Gene Expression , HeLa Cells , Humans , Nuclear Envelope/metabolism , Nuclear Envelope/ultrastructure , Nucleocytoplasmic Transport Proteins/antagonists & inhibitors , Nucleocytoplasmic Transport Proteins/metabolism , Phytic Acid/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
18.
Cell Death Differ ; 22(1): 58-73, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25236395

ABSTRACT

Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as 'accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. 'Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.


Subject(s)
Apoptosis , Signal Transduction , Animals , Humans , Terminology as Topic
19.
Arch Dis Child ; 99(12): 1078-82, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24790135

ABSTRACT

BACKGROUND: Toxic shock syndrome (TSS) is an acute toxin-mediated illness caused by toxin-producing strains of Staphylococcus aureus and Streptococcus pyogenes. There is no recent data regarding incidence, management and mortality of TSS in UK children. METHODS: Consultants from paediatric and burns units in the UK and Ireland, reported cases of TSS seen between November 2008 and December 2009, via the British Paediatric Surveillance Unit. Respondents were sent questionnaires requesting detailed information about TSS cases. Established criteria were used to divide cases into staphylococcal or streptococcal TSS. RESULTS: Forty-nine cases were identified overall; 29 cases of streptococcal TSS (18 confirmed and 11 probable) and 20 cases of staphylococcal TSS (15 confirmed and 5 probable). The incidence of TSS children in the UK & the Republic of Ireland was calculated to be 0.38 per 100 000 children. Children with staphylococcal TSS were older than those with streptococcal TSS (9.5 vs 3.8 years; p<0.003). Paediatric intensive care facilities were used for 78% of cases (invasive ventilatory support 69%; inotropic support 67%; haemofiltration 12%). Agents with antitoxin effects were underused; clindamycin 67%, intravenous immunoglobulin (IVIG) 20%, fresh frozen plasma 40%. There were eight deaths, all in the streptococcal group (28% of streptococcal cases)-none were given IVIG. CONCLUSIONS: Streptococcal TSS was as frequent as staphylococcal TSS, contrasting with previous literature. Children with streptococcal TSS had a higher mortality than those with staphylococcal TSS (28% vs 0%; p<0.05). Recommended immunomodulatory agents (IVIG and clindamycin) were underused. This study highlights the need for a guideline to improve management of TSS in children.


Subject(s)
Shock, Septic/epidemiology , Staphylococcal Infections/epidemiology , Streptococcal Infections/epidemiology , Adolescent , Child , Child, Preschool , Epidemiological Monitoring , Female , Humans , Incidence , Infant , Ireland/epidemiology , Male , Shock, Septic/drug therapy , Shock, Septic/microbiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Streptococcal Infections/drug therapy , Streptococcal Infections/microbiology , United Kingdom/epidemiology
20.
Neuroscience ; 268: 128-38, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24657774

ABSTRACT

Congenital toxoplasmosis and toxoplasmic encephalitis can be associated with severe neuropsychiatric symptoms. However, which host cell processes are regulated and how Toxoplasma gondii affects these changes remain unclear. MicroRNAs (miRNAs) are small noncoding RNA sequences critical to neurodevelopment and adult neuronal processes by coordinating the activity of multiple genes within biological networks. We examined the expression of over 1000 miRNAs in human neuroepithelioma cells in response to infection with Toxoplasma. MiR-132, a cyclic AMP-responsive element binding (CREB)-regulated miRNA, was the only miRNA that was substantially upregulated by all three prototype Toxoplasma strains. The increased expression of miR-132 was also documented in mice following infection with Toxoplasma. To identify cellular pathways regulated by miR-132, we performed target prediction followed by pathway enrichment analysis in the transcriptome of Toxoplasma-infected mice. This led us to identify 20 genes and dopamine receptor signaling was their strongest associated pathway. We then examined myriad aspects of the dopamine pathway in the striatum of Toxoplasma-infected mice 5days after infection. Here we report decreased expression of D1-like dopamine receptors (DRD1, DRD5), metabolizing enzyme (MAOA) and intracellular proteins associated with the transduction of dopamine-mediated signaling (DARPP-32 phosphorylation at Thr34 and Ser97). Increased concentrations of dopamine and its metabolites, serotonin (5-HT) and 5-hydroxyindoleacetic acid were documented by HPLC analysis; however, the metabolism of dopamine was decreased and 5-HT metabolism was unchanged. Our data show that miR-132 is upregulated following infection with Toxoplasma and is associated with changes in dopamine receptor signaling. Our findings provide a possible mechanism for how the parasite contributes to the neuropathology of infection.


Subject(s)
Dopamine/metabolism , MicroRNAs/metabolism , Toxoplasmosis/metabolism , Animals , Cell Line, Tumor , Corpus Striatum/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Humans , Hydroxyindoleacetic Acid/metabolism , Mice , Monoamine Oxidase/metabolism , Neuroectodermal Tumors, Primitive, Peripheral/metabolism , Neurons/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D5/metabolism , Serotonin/metabolism , Signal Transduction , Toxoplasmosis, Animal/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL