Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Children (Basel) ; 9(5)2022 May 07.
Article in English | MEDLINE | ID: covidwho-1875510

ABSTRACT

While the clinical impact of COVID-19 on adults has been massive, the majority of children develop pauci-symptomatic or even asymptomatic infection and only a minority of the latter develop a fatal outcome. The reasons of such differences are not yet established. We examined cytokines in sera and Th and B cell subpopulations in peripheral blood mononuclear cells (PBMC) from 40 children (<18 years old), evaluating the impact of COVID-19 infection during the pandemic's first waves. We correlated our results with clinical symptoms and compared them to samples obtained from 16 infected adults and 7 healthy controls. While IL6 levels were lower in SARS-CoV-2+ children as compared to adult patients, the expression of other pro-inflammatory cytokines such as IFNγ and TNFα directly correlated with early age infection and symptoms. Th and B cell subsets were modified during pediatric infection differently with respect to adult patients and controls and within the pediatric group based on age. Low levels of IgD- CD27+ memory B cells correlated with absent/mild symptoms. On the contrary, high levels of FoxP3+/CD25high T-Regs associated with a moderate-severe clinical course in the childhood. These T and B cells subsets did not associate with severity in infected adults, with children showing a predominant expansion of immature B lymphocytes and natural regulatory T cells. This study shows differences in immunopathology of SARS-CoV-2 infection in children compared with adults. Moreover, these data could provide information that can drive vaccination endpoints for children.

2.
Mediterr J Hematol Infect Dis ; 14(1): e2022021, 2022.
Article in English | MEDLINE | ID: covidwho-1744830

ABSTRACT

Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) at the end of 2019, a number of medications have been used to treat the infection and the related Coronavirus disease - 19 (COVID-19). Some of the administered drugs were tested or used in practice only on the basis of biological plausibility; a promising strategy was to target the host immune response, with host directed therapies (HDTs), to reduce systemic hyperinflammation and hypercytokinemia responsible for additional tissue damage. We summarize the treatments against SARS-CoV-2 and underline their possible effects on Mycobacterium tuberculosis (Mtb) infection. Both SARS-CoV-2 and Mtb respiratory infections impair the host's immune response. Furthermore, little research has been conducted on the impact of medicaments used to counteract COVID-19 disease in patients with Latent Tuberculosis Infection (LTBI). A number of these drugs may modulate host immune response by modifying LTBI dynamic equilibrium, favoring either the host or the bacteria.

3.
Carbon N Y ; 194: 34-41, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1739589

ABSTRACT

Additive manufacturing has played a crucial role in the COVID-19 global emergency allowing for rapid production of medical devices, indispensable tools for hospitals, or personal protection equipment. However, medical devices, especially in nosocomial environments, represent high touch surfaces prone to viral infection and currently used filaments for 3D printing can't inhibit transmission of virus [1]. Graphene-family materials are capable of reinforcing mechanical, optical and thermal properties of 3D printed constructs. In particular, graphene can adsorb near-infrared light with high efficiency. Here we demonstrate that the addition of graphene nanoplatelets to PLA filaments (PLA-G) allows the creation of 3D-printed devices that can be sterilized by near-infrared light exposure at power density analog to sunlight. This method has been used to kill SARS-CoV-2 viral particles on the surface of 3D printed PLA-G by 3 min of exposure. 3D-printed PLA-G is highly biocompatible and can represent the ideal material for the production of sterilizable personal protective equipment and daily life objects intended for multiple users.

5.
Gut Pathog ; 13(1): 62, 2021 Oct 16.
Article in English | MEDLINE | ID: covidwho-1546792

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) has a tropism for the gastrointestinal tract and several studies have shown an alteration of the gut microbiota in hospitalized infected patients. However, long-term data on microbiota changes after recovery are lacking. METHODS: We enrolled 30 patients hospitalized for SARS­CoV­2-related pneumonia. Their gut microbiota was analyzed within 48 h from the admission and compared with (1) that of other patients admitted for suspected bacterial pneumonia (control group) (2) that obtained from the same subject 6 months after nasopharyngeal swab negativization. RESULTS: Gut microbiota alpha-diversity increased 6 months after the resolution of SARS-CoV-2 infection. Bacteroidetes relative abundance was higher (≈ 36.8%) in patients with SARS-CoV-2, and declined to 18.7% when SARS-CoV-2 infection resolved (p = 0.004). Conversely, Firmicutes were prevalent (≈ 75%) in controls and in samples collected after SARS-CoV-2 infection resolution (p = 0.001). Ruminococcaceae, Lachnospiraceae and Blautia increased after SARS-CoV-2 infection resolution, rebalancing the gut microbiota composition. CONCLUSION: SARS-CoV-2 infection is associated with changes in the gut microbiome, which tend to be reversed in long-term period.

6.
J Clin Med ; 10(8)2021 Apr 17.
Article in English | MEDLINE | ID: covidwho-1526842

ABSTRACT

The aim of this study was to characterize COVID-19 (SARS-CoV-2-infected) patients who develop bloodstream infection (BSI) and to assess risk factors associated with in-hospital mortality. We conducted a retrospective observational study of adult patients admitted for ≥48 h to a large Central Italy hospital for COVID-19 (1 March to 31 May 2020) who had or had not survived at discharge. We included only patients having blood cultures drawn or other inclusion criteria satisfied. Kaplan-Meier survival or Cox regression analyses were performed of 293 COVID-19 patients studied, 46 patients (15.7%) had a hospital-acquired clinically relevant BSI secondary to SARS-CoV-2 infection, accounting for 58 episodes (49 monomicrobial and 9 polymicrobial) in total. Twelve episodes (20.7%) occurred at day 3 of hospital admission. Sixty-nine species were isolated, including Staphylococcus aureus (32.8%), Enterobacterales (20.7%), Enterococcus faecalis (17.2%), Candida (13.8%) and Pseudomonas aeruginosa (10.3%). Of 69 isolates, 27 (39.1%) were multidrug-resistant organisms. Twelve (54.5%) of 22 patients for whom empirical antimicrobial therapy was inappropriate were infected by a multidrug-resistant organism. Of 46 patients, 26 (56.5%) survived and 20 (43.5%) died. Exploring variables for association with in-hospital mortality identified > 75-year age (HR 2.97, 95% CI 1.15-7.68, p = 0.02), septic shock (HR 6.55, 95% CI 2.36-18.23, p < 0.001) and BSI onset ≤ 3 days (HR 4.68, 95% CI 1.40-15.63, p = 0.01) as risk factors independently associated with death. In our hospital, mortality among COVID-19 patients with BSI was high. While continued vigilance against these infections is essential, identification of risk factors for mortality may help to reduce fatal outcomes in patients with COVID-19.

8.
iScience ; 24(7): 102788, 2021 Jul 23.
Article in English | MEDLINE | ID: covidwho-1284161

ABSTRACT

Recent advancements in bidimensional nanoparticles production such as graphene (G) and graphene oxide (GO) have the potential to meet the need for highly functional personal protective equipment (PPE) against SARS-CoV-2 infection. The ability of G and GO to interact with microorganisms provides an opportunity to develop engineered textiles for use in PPE and limit the spread of COVID-19. PPE in current use in high-risk settings for COVID transmission provides only a physical barrier that decreases infection likelihood and does not inactivate the virus. Here, we show that virus pre-incubation with soluble GO inhibits SARS-CoV-2 infection of VERO cells. Furthermore, when G/GO-functionalized polyurethane or cotton was in contact SARS-CoV-2, the infectivity of the fabric was nearly completely inhibited. The findings presented here constitute an important innovative nanomaterial-based strategy to significantly increase PPE efficacy in protection against the SARS-CoV-2 virus that may implement water filtration, air purification, and diagnostics methods.

9.
Crit Care ; 25(1): 197, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1261277

ABSTRACT

BACKGROUND: Hospitalized patients with COVID-19 admitted to the intensive care unit (ICU) and requiring mechanical ventilation are at risk of ventilator-associated bacterial infections secondary to SARS-CoV-2 infection. Our study aimed to investigate clinical features of Staphylococcus aureus ventilator-associated pneumonia (SA-VAP) and, if bronchoalveolar lavage samples were available, lung bacterial community features in ICU patients with or without COVID-19. METHODS: We prospectively included hospitalized patients with COVID-19 across two medical ICUs of the Fondazione Policlinico Universitario A. Gemelli IRCCS (Rome, Italy), who developed SA-VAP between 20 March 2020 and 30 October 2020 (thereafter referred to as cases). After 1:2 matching based on the simplified acute physiology score II (SAPS II) and the sequential organ failure assessment (SOFA) score, cases were compared with SA-VAP patients without COVID-19 (controls). Clinical, microbiological, and lung microbiota data were analyzed. RESULTS: We studied two groups of patients (40 COVID-19 and 80 non-COVID-19). COVID-19 patients had a higher rate of late-onset (87.5% versus 63.8%; p = 0.01), methicillin-resistant (65.0% vs 27.5%; p < 0.01) or bacteremic (47.5% vs 6.3%; p < 0.01) infections compared with non-COVID-19 patients. No statistically significant differences between the patient groups were observed in ICU mortality (p = 0.12), clinical cure (p = 0.20) and microbiological eradication (p = 0.31). On multivariable logistic regression analysis, SAPS II and initial inappropriate antimicrobial therapy were independently associated with ICU mortality. Then, lung microbiota characterization in 10 COVID-19 and 16 non-COVID-19 patients revealed that the overall microbial community composition was significantly different between the patient groups (unweighted UniFrac distance, R2 0.15349; p < 0.01). Species diversity was lower in COVID-19 than in non COVID-19 patients (94.4 ± 44.9 vs 152.5 ± 41.8; p < 0.01). Interestingly, we found that S. aureus (log2 fold change, 29.5), Streptococcus anginosus subspecies anginosus (log2 fold change, 24.9), and Olsenella (log2 fold change, 25.7) were significantly enriched in the COVID-19 group compared to the non-COVID-19 group of SA-VAP patients. CONCLUSIONS: In our study population, COVID-19 seemed to significantly affect microbiological and clinical features of SA-VAP as well as to be associated with a peculiar lung microbiota composition.


Subject(s)
COVID-19/complications , Pneumonia, Ventilator-Associated/microbiology , Staphylococcal Infections/etiology , Staphylococcus aureus/isolation & purification , Aged , Anti-Bacterial Agents/therapeutic use , Bronchoalveolar Lavage Fluid/microbiology , COVID-19/mortality , COVID-19/therapy , Female , Hospital Mortality , Hospitalization , Humans , Intensive Care Units , Italy , Logistic Models , Lung/microbiology , Male , Middle Aged , Organ Dysfunction Scores , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/etiology , Prospective Studies , Respiration, Artificial , Staphylococcal Infections/drug therapy
11.
Comput Struct Biotechnol J ; 19: 1838-1847, 2021.
Article in English | MEDLINE | ID: covidwho-1147687

ABSTRACT

Short Linear Motifs (SLiMs) are functional protein microdomains that typically mediate interactions between a short linear region in one protein and a globular domain in another. Surface Plasmon Resonance assays have been performed to determine the binding affinity between PDZ domain of wild type human PALS1 protein and tetradecapeptides representing the SLiMs sequences of SARS-CoV-1 and SARS-CoV-2 E proteins (E-SLiMs). SARS-CoV-2 E-SLiM binds to the human target protein with a higher affinity compared to SARS-CoV-1, showing a difference significantly greater than previously reported using the F318W mutant of PALS1 protein and shorter target peptides. Moreover, molecular dynamics simulations have provided clear evidence of the structural determinants driving this binding process. Specifically, the Arginine 69 residue in the SARS-CoV-2 E-SLiM is the key residue able to both enhance the specific polar interaction with negatively charged pockets of the PALS1 PDZ domain and reduce significantly the mobility of the viral peptide. These experimental and computational data are reinforced by the comparison of the interaction between the PALS1 PDZ domain with the natural ligand CRB1, as well as the corresponding E-SLiMs of other coronavirus members such as MERS and OCF43. Our results provide a model at the molecular level of the strategies used to mimic the endogenous SLiM peptide in the binding of the tight junctions of the host cell, explaining one of the possible reasons of the severity of the infection and pulmonary inflammation by SARS-CoV-2.

13.
Pediatr Pulmonol ; 56(6): 1374-1377, 2021 06.
Article in English | MEDLINE | ID: covidwho-1064418

ABSTRACT

Weather and the susceptibility of children to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still a debated question and currently a hot topic, particularly in view of important decisions regarding opening schools. Therefore, we performed this prospective analysis of anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies in children with known household exposure to SARS-CoV-2 and compared their IgG status with the other adults exposed to the index case in the same household. A total of 30 families with a documented COVID-19 index case were included. A total of 44 out of 80 household contacts (55%) of index patients had anti SARS-CoV-2 IgG antibodies. In particular, 16/27 (59,3%) adult partners had IgG antibodies compared with 28/53 (52,3%) of pediatric contacts (p > .05). Among the pediatric population, children ≥5 years of age had a similar probability of having SARS-CoV-2 IgG antibodies (21/39, 53.8%) compared to those less than 5 years old (7/14, 50%) (p > .05). Adult partners and children also had a similar probability of having SARS-CoV-2 IgG antibodies. Interestingly, 10/28 (35.7%) of children and 5/27 (18.5%) of adults with SARS-CoV-2 IgG antibodies were previously diagnosed as COVID-19 cases. Our study shows evidence of a high rate of IgG antibodies in children exposed to SARS-CoV-2. This report has public health implications, highlighting the need to establish appropriate guidelines for school openings and other social activities related to childhood.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , Immunoglobulin G/blood , SARS-CoV-2 , Adolescent , Adult , COVID-19/immunology , COVID-19/virology , Child , Child, Preschool , Environmental Exposure , Humans , Infant , Infant, Newborn , Middle Aged , Seroepidemiologic Studies
14.
mSphere ; 6(1)2021 01 06.
Article in English | MEDLINE | ID: covidwho-1061527

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination occurs through droplets and biological fluids released in the surroundings from patients or asymptomatic carriers. Surfaces and objects contaminated by saliva or nose secretions represent a risk for indirect transmission of coronavirus disease 2019 (COVID-19). We assayed surfaces from hospital and living spaces to identify the presence of viral RNA and the spread of fomites in the environment. Anthropic contamination by droplets and biological fluids was monitored by detecting the microbiota signature using multiplex quantitative real-time PCR (qPCR) on selected species and massive sequencing on 16S amplicons. A total of 92 samples (flocked swabs) were collected from critical areas during the pandemic, including indoor (three hospitals and three public buildings) and outdoor surfaces exposed to anthropic contamination (handles and handrails, playgrounds). Traces of biological fluids were frequently detected in spaces open to the public and on objects that are touched with the hands (>80%). However, viral RNA was not detected in hospital wards or other indoor and outdoor surfaces either in the air system of a COVID hospital but only in the surroundings of an infected patient, in consistent association with droplet traces and fomites. Handled objects accumulated the highest level of multiple contaminations by saliva, nose secretions, and fecal traces, further supporting the priority role of handwashing in prevention. In conclusion, anthropic contamination by droplets and biological fluids is widespread in spaces open to the public and can be traced by qPCR. Monitoring fomites can support evaluation of indirect transmission risks for coronavirus or other flu-like viruses in the environment.IMPORTANCE Several studies have evaluated the presence of SARS-CoV-2 in the environment. Saliva and nasopharyngeal droplets can land on objects and surfaces, creating fomites. A suitable indicator would allow the detection of droplets or biofluids carrying the virus. Therefore, we searched for viral RNA and droplets and fomites on at risk surfaces. We monitored by qPCR or next generation sequencing (NGS) droplets through their microbiota. Although the study was performed during the pandemic, SARS-CoV-2 was not significantly found on surfaces, with the only exception of environmental areas near infectious patients. Conversely, anthropic contamination was frequent, suggesting a role for biofluids as putative markers of indirect transmission and risk assessment. Moreover, all SARS-CoV-2-contaminated surfaces showed droplets' microbiota. Fomite monitoring by qPCR may have an impact on public health strategies, supporting prevention of indirect transmission similarly to what is done for other communicable diseases (e.g., influenza and influenza-like infections).


Subject(s)
Environmental Exposure/analysis , Fomites/virology , Hospitals , Real-Time Polymerase Chain Reaction , SARS-CoV-2/physiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Humans , RNA, Viral , Saliva/virology , Surface Properties
15.
Nano Today ; 37: 101077, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1026396

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is one of the biggest challenges of the 21st century. While researchers are working on vaccine development and elucidating the mechanism of action and evolution of the harmful SARS-CoV-2, the current most important public health measure, second only to social distancing, is the obligatory wearing of facial protection. The Centers for Disease Control and Prevention recommended in April 2020 that the public wear face coverings in areas with high rates of transmission based on epidemiological evidence on the strong relationship between mask wearing and pandemic control. This protection against SARS-CoV-2 and other airborne pathogens, boost the design and production of innovative solutions by industry stakeholders. Nanoparticles, nanofibers, and other pioneering technologies based on nanomaterials have been introduced in mask production chains to improve performance and confer antiviral properties. During an emergency like COVID-19, these products directly available to the public should be carefully analyzed in terms of efficacy and possible long-term effects on the wearers' skin and lungs as well as on the environment. This opinion paper provides a wealth of information on the role of nanotechnologies in improving the performance of facial masks and on possible future consequences caused by a poorly regulated use of nanotechnology in textiles.

16.
mSphere ; 6(1)2021 01 06.
Article in English | MEDLINE | ID: covidwho-1013023

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination occurs through droplets and biological fluids released in the surroundings from patients or asymptomatic carriers. Surfaces and objects contaminated by saliva or nose secretions represent a risk for indirect transmission of coronavirus disease 2019 (COVID-19). We assayed surfaces from hospital and living spaces to identify the presence of viral RNA and the spread of fomites in the environment. Anthropic contamination by droplets and biological fluids was monitored by detecting the microbiota signature using multiplex quantitative real-time PCR (qPCR) on selected species and massive sequencing on 16S amplicons. A total of 92 samples (flocked swabs) were collected from critical areas during the pandemic, including indoor (three hospitals and three public buildings) and outdoor surfaces exposed to anthropic contamination (handles and handrails, playgrounds). Traces of biological fluids were frequently detected in spaces open to the public and on objects that are touched with the hands (>80%). However, viral RNA was not detected in hospital wards or other indoor and outdoor surfaces either in the air system of a COVID hospital but only in the surroundings of an infected patient, in consistent association with droplet traces and fomites. Handled objects accumulated the highest level of multiple contaminations by saliva, nose secretions, and fecal traces, further supporting the priority role of handwashing in prevention. In conclusion, anthropic contamination by droplets and biological fluids is widespread in spaces open to the public and can be traced by qPCR. Monitoring fomites can support evaluation of indirect transmission risks for coronavirus or other flu-like viruses in the environment.IMPORTANCE Several studies have evaluated the presence of SARS-CoV-2 in the environment. Saliva and nasopharyngeal droplets can land on objects and surfaces, creating fomites. A suitable indicator would allow the detection of droplets or biofluids carrying the virus. Therefore, we searched for viral RNA and droplets and fomites on at risk surfaces. We monitored by qPCR or next generation sequencing (NGS) droplets through their microbiota. Although the study was performed during the pandemic, SARS-CoV-2 was not significantly found on surfaces, with the only exception of environmental areas near infectious patients. Conversely, anthropic contamination was frequent, suggesting a role for biofluids as putative markers of indirect transmission and risk assessment. Moreover, all SARS-CoV-2-contaminated surfaces showed droplets' microbiota. Fomite monitoring by qPCR may have an impact on public health strategies, supporting prevention of indirect transmission similarly to what is done for other communicable diseases (e.g., influenza and influenza-like infections).


Subject(s)
Environmental Exposure/analysis , Fomites/virology , Hospitals , Real-Time Polymerase Chain Reaction , SARS-CoV-2/physiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Humans , RNA, Viral , Saliva/virology , Surface Properties
17.
Microbes Infect ; 22(10): 592-597, 2020.
Article in English | MEDLINE | ID: covidwho-744191

ABSTRACT

The Envelope (E) protein of SARS-CoV-2 is the most enigmatic protein among the four structural ones. Most of its current knowledge is based on the direct comparison to the SARS E protein, initially mistakenly undervalued and subsequently proved to be a key factor in the ER-Golgi localization and in tight junction disruption. We compared the genomic sequences of E protein of SARS-CoV-2, SARS-CoV and the closely related genomes of bats and pangolins obtained from the GISAID and GenBank databases. When compared to the known SARS E protein, we observed a significant difference in amino acid sequence in the C-terminal end of SARS-CoV-2 E protein. Subsequently, in silico modelling analyses of E proteins conformation and docking provide evidences of a strengthened binding of SARS-CoV-2 E protein with the tight junction-associated PALS1 protein. Based on our computational evidences and on data related to SARS-CoV, we believe that SARS-CoV-2 E protein interferes more stably with PALS1 leading to an enhanced epithelial barrier disruption, amplifying the inflammatory processes, and promoting tissue remodelling. These findings raise a warning on the underestimated role of the E protein in the pathogenic mechanism and open the route to detailed experimental investigations.


Subject(s)
COVID-19/metabolism , Membrane Proteins/chemistry , Nucleoside-Phosphate Kinase/chemistry , SARS-CoV-2/chemistry , Tight Junctions/chemistry , Viral Envelope Proteins/chemistry , Amino Acid Sequence , Animals , COVID-19/genetics , Chiroptera/virology , Databases, Genetic , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Dynamics Simulation , Nucleoside-Phosphate Kinase/genetics , Nucleoside-Phosphate Kinase/metabolism , Pangolins/virology , SARS Virus/chemistry , SARS Virus/genetics , SARS Virus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Tight Junctions/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
18.
Biol Proced Online ; 22: 18, 2020.
Article in English | MEDLINE | ID: covidwho-670176

ABSTRACT

We analyzed the bacterial communities of the nasopharynx in 40 SARS-CoV-2 infected and uninfected patients. All infected patients had a mild COVID-19 disease. We did not find statistically significant differences in either bacterial richness and diversity or composition. These findings suggest a nasopharyngeal microbiota at least early resilient to SARS-CoV-2 infection.

19.
Microbes Infect ; 22(4-5): 182-187, 2020.
Article in English | MEDLINE | ID: covidwho-626674

ABSTRACT

Envelope protein of coronaviruses is a structural protein existing in both monomeric and homo-pentameric form. It has been related to a multitude of roles including virus infection, replication, dissemination and immune response stimulation. In the present study, we employed an immunoinformatic approach to investigate the major immunogenic domains of the SARS-CoV-2 envelope protein and map them among the homologue proteins of coronaviruses with tropism for animal species that are closely inter-related with the human beings population all over the world. Also, when not available, we predicted the envelope protein structural folding and mapped SARS-CoV-2 epitopes. Envelope sequences alignment provides evidence of high sequence homology for some of the investigated virus specimens; while the structural mapping of epitopes resulted in the interesting maintenance of the structural folding and epitope sequence localization also in the envelope proteins scoring a lower alignment score. In line with the One-Health approach, our evidences provide a molecular structural rationale for a potential role of taxonomically related coronaviruses in conferring protection from SARS-CoV-2 infection and identifying potential candidates for the development of diagnostic tools and prophylactic-oriented strategies.


Subject(s)
Betacoronavirus/metabolism , Computational Biology/methods , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Viral Envelope Proteins/immunology , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Coronavirus Envelope Proteins , Epitope Mapping , Gene Expression Regulation, Viral , Humans , Models, Molecular , One Health , Pandemics , Phylogeny , Protein Conformation , SARS-CoV-2 , Sequence Alignment , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL