Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Vaccine ; 40(23): 3150-3158, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-1796041

ABSTRACT

BACKGROUND: The COVID-19 pandemic caused an abrupt drop in in-person health care (inpatient, Emergency Department, outpatient) and an increase in telehealth care, which poses challenges in vaccine safety studies that identify outcomes from in-person encounters. We examined the changes in incidence rates of selected encounter-based outcomes during the COVID-19 pandemic. METHODS: We assembled a cohort of members from 8 Vaccine Safety Datalink sites from January 1, 2017 through December 31, 2020. Using ICD-10 diagnosis codes or laboratory criteria, we identified 21 incident outcomes in traditional in-person settings and all settings. We defined 4 periods in 2020: January-February (pre-pandemic), April-June (early pandemic), July-September (middle pandemic), and October-December (late pandemic). We defined four corresponding periods in each year during 2017-2019. We calculated incidence rates, conducted difference in difference (DiD) analyses, and reported ratios of incidence rate ratios (RRR) to examine changes in rates from pre-pandemic to early, middle, and late pandemic in 2020, after adjusting for changes across similar periods in 2017-2019. RESULTS: Among > 10 million members, regardless of setting and after adjusting for changes during 2017-2019, we found that incidence rates of acute disseminated encephalomyelitis, encephalitis/myelitis/encephalomyelitis/meningoencephalitis, and thrombotic thrombocytopenic purpura did not significantly change from the pre-pandemic to early, middle or late pandemic periods (p-values ≥ 0.05). Incidence rates decreased from the pre-pandemic to early pandemic period during 2020 for acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, convulsions/seizures, Guillain-Barré syndrome, immune thrombocytopenia (ITP), narcolepsy/cataplexy, hemorrhagic stroke, ischemic stroke, and venous thromboembolism (p-values < 0.05). Incidence rates of Bell's palsy, ITP, and narcolepsy/cataplexy were higher in all settings than in traditional in-person settings during the three pandemic periods (p-values < 0.05). CONCLUSION: Rates of some clinical outcomes during the pandemic changed and should not be used as historical background rates in vaccine safety studies. Inclusion of telehealth visits should be considered for vaccine studies involving Bell's palsy, ITP, and narcolepsy/cataplexy.


Subject(s)
Bell Palsy , COVID-19 , Cataplexy , Narcolepsy , Thrombocytopenia , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Cataplexy/complications , Cataplexy/epidemiology , Humans , Incidence , Pandemics/prevention & control
2.
MMWR Morb Mortal Wkly Rep ; 71(13): 495-502, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1771891

ABSTRACT

CDC recommends that all persons aged ≥18 years receive a single COVID-19 vaccine booster dose ≥2 months after receipt of an Ad.26.COV2.S (Janssen [Johnson & Johnson]) adenovirus vector-based primary series vaccine; a heterologous COVID-19 mRNA vaccine is preferred over a homologous (matching) Janssen vaccine for booster vaccination. This recommendation was made in light of the risks for rare but serious adverse events following receipt of a Janssen vaccine, including thrombosis with thrombocytopenia syndrome and Guillain-Barré syndrome† (1), and clinical trial data indicating similar or higher neutralizing antibody response following heterologous boosting compared with homologous boosting (2). Data on real-world vaccine effectiveness (VE) of different booster strategies following a primary Janssen vaccine dose are limited, particularly during the period of Omicron variant predominance. The VISION Network§ determined real-world VE of 1 Janssen vaccine dose and 2 alternative booster dose strategies: 1) a homologous booster (i.e., 2 Janssen doses) and 2) a heterologous mRNA booster (i.e., 1 Janssen dose/1 mRNA dose). In addition, VE of these booster strategies was compared with VE of a homologous booster following mRNA primary series vaccination (i.e., 3 mRNA doses). The study examined 80,287 emergency department/urgent care (ED/UC) visits¶ and 25,244 hospitalizations across 10 states during December 16, 2021-March 7, 2022, when Omicron was the predominant circulating variant.** VE against laboratory-confirmed COVID-19-associated ED/UC encounters was 24% after 1 Janssen dose, 54% after 2 Janssen doses, 79% after 1 Janssen/1 mRNA dose, and 83% after 3 mRNA doses. VE for the same vaccination strategies against laboratory-confirmed COVID-19-associated hospitalizations were 31%, 67%, 78%, and 90%, respectively. All booster strategies provided higher protection than a single Janssen dose against ED/UC visits and hospitalizations during Omicron variant predominance. Vaccination with 1 Janssen/1 mRNA dose provided higher protection than did 2 Janssen doses against COVID-19-associated ED/UC visits and was comparable to protection provided by 3 mRNA doses during the first 120 days after a booster dose. However, 3 mRNA doses provided higher protection against COVID-19-associated hospitalizations than did other booster strategies during the same time interval since booster dose. All adults who have received mRNA vaccines for their COVID-19 primary series vaccination should receive an mRNA booster dose when eligible. Adults who received a primary Janssen vaccine dose should preferentially receive a heterologous mRNA vaccine booster dose ≥2 months later, or a homologous Janssen vaccine booster dose if mRNA vaccine is contraindicated or unavailable. Further investigation of the durability of protection afforded by different booster strategies is warranted.


Subject(s)
COVID-19 , Influenza Vaccines , Adolescent , Adult , Ambulatory Care , COVID-19/prevention & control , COVID-19 Vaccines , Emergency Service, Hospital , Hospitalization , Humans , Immunization, Secondary , SARS-CoV-2 , Vaccines, Synthetic
3.
MMWR Morb Mortal Wkly Rep ; 71(9): 352-358, 2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-1727017

ABSTRACT

The efficacy of the BNT162b2 (Pfizer-BioNTech) vaccine against laboratory-confirmed COVID-19 exceeded 90% in clinical trials that included children and adolescents aged 5-11, 12-15, and 16-17 years (1-3). Limited real-world data on 2-dose mRNA vaccine effectiveness (VE) in persons aged 12-17 years (referred to as adolescents in this report) have also indicated high levels of protection against SARS-CoV-2 (the virus that causes COVID-19) infection and COVID-19-associated hospitalization (4-6); however, data on VE against the SARS-CoV-2 B.1.1.529 (Omicron) variant and duration of protection are limited. Pfizer-BioNTech VE data are not available for children aged 5-11 years. In partnership with CDC, the VISION Network* examined 39,217 emergency department (ED) and urgent care (UC) encounters and 1,699 hospitalizations† among persons aged 5-17 years with COVID-19-like illness across 10 states during April 9, 2021-January 29, 2022,§ to estimate VE using a case-control test-negative design. Among children aged 5-11 years, VE against laboratory-confirmed COVID-19-associated ED and UC encounters 14-67 days after dose 2 (the longest interval after dose 2 in this age group) was 46%. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 83% and 76%, respectively; VE ≥150 days after dose 2 was 38% and 46%, respectively. Among adolescents aged 16-17 years, VE increased to 86% ≥7 days after dose 3 (booster dose). VE against COVID-19-associated ED and UC encounters was substantially lower during the Omicron predominant period than the B.1.617.2 (Delta) predominant period among adolescents aged 12-17 years, with no significant protection ≥150 days after dose 2 during Omicron predominance. However, in adolescents aged 16-17 years, VE during the Omicron predominant period increased to 81% ≥7 days after a third booster dose. During the full study period, including pre-Delta, Delta, and Omicron predominant periods, VE against laboratory-confirmed COVID-19-associated hospitalization among children aged 5-11 years was 74% 14-67 days after dose 2, with wide CIs that included zero. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 92% and 94%, respectively; VE ≥150 days after dose 2 was 73% and 88%, respectively. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations, including a booster dose for those aged 12-17 years.


Subject(s)
/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , /statistics & numerical data , Adolescent , Ambulatory Care/statistics & numerical data , Child , Child, Preschool , Emergency Service, Hospital/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Male , United States
4.
MMWR Morb Mortal Wkly Rep ; 71(7): 255-263, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1689713

ABSTRACT

CDC recommends that all persons aged ≥12 years receive a booster dose of COVID-19 mRNA vaccine ≥5 months after completion of a primary mRNA vaccination series and that immunocompromised persons receive a third primary dose.* Waning of vaccine protection after 2 doses of mRNA vaccine has been observed during the period of the SARS-CoV-2 B.1.617.2 (Delta) variant predominance† (1-5), but little is known about durability of protection after 3 doses during periods of Delta or SARS-CoV-2 B.1.1.529 (Omicron) variant predominance. A test-negative case-control study design using data from eight VISION Network sites§ examined vaccine effectiveness (VE) against COVID-19 emergency department/urgent care (ED/UC) visits and hospitalizations among U.S. adults aged ≥18 years at various time points after receipt of a second or third vaccine dose during two periods: Delta variant predominance and Omicron variant predominance (i.e., periods when each variant accounted for ≥50% of sequenced isolates).¶ Persons categorized as having received 3 doses included those who received a third dose in a primary series or a booster dose after a 2 dose primary series (including the reduced-dosage Moderna booster). The VISION Network analyzed 241,204 ED/UC encounters** and 93,408 hospitalizations across 10 states during August 26, 2021-January 22, 2022. VE after receipt of both 2 and 3 doses was lower during the Omicron-predominant than during the Delta-predominant period at all time points evaluated. During both periods, VE after receipt of a third dose was higher than that after a second dose; however, VE waned with increasing time since vaccination. During the Omicron period, VE against ED/UC visits was 87% during the first 2 months after a third dose and decreased to 66% among those vaccinated 4-5 months earlier; VE against hospitalizations was 91% during the first 2 months following a third dose and decreased to 78% ≥4 months after a third dose. For both Delta- and Omicron-predominant periods, VE was generally higher for protection against hospitalizations than against ED/UC visits. All eligible persons should remain up to date with recommended COVID-19 vaccinations to best protect against COVID-19-associated hospitalizations and ED/UC visits.


Subject(s)
Ambulatory Care/statistics & numerical data , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , SARS-CoV-2/immunology , /administration & dosage , Adult , Aged , Aged, 80 and over , Case-Control Studies , Emergency Service, Hospital , Female , Humans , Male , Middle Aged , Time Factors , United States , Young Adult
6.
Vaccine ; 40(5): 752-756, 2022 01 31.
Article in English | MEDLINE | ID: covidwho-1586268

ABSTRACT

BACKGROUND: The Vaccine Safety Datalink (VSD) uses vaccination data from electronic health records (EHR) at eight integrated health systems to monitor vaccine safety. Accurate capture of data from vaccines administered outside of the health system is critical for vaccine safety research, especially for COVID-19 vaccines, where many are administered in non-traditional settings. However, timely access and inclusion of data from Immunization Information Systems (IIS) into VSD safety assessments is not well understood. METHODS: We surveyed the eight data-contributing VSD sites to assess: 1) status of sending data to IIS; 2) status of receiving data from IIS; and 3) integration of IIS data into the site EHR. Sites reported separately for COVID-19 vaccination to capture any differences in capacity to receive and integrate data on COVID-19 vaccines versus other vaccines. RESULTS: All VSD sites send data to and receive data from their state IIS. All eight sites (100%) routinely integrate IIS data for COVID-19 vaccines into VSD research studies. Six sites (75%) also routinely integrate all other vaccination data; two sites integrate data from IIS following a reconciliation process, which can result in delays to integration into VSD datasets. CONCLUSIONS: COVID-19 vaccines are being administered in a variety of non-traditional settings, where IIS are commonly used as centralized reporting systems. All eight VSD sites receive and integrate COVID-19 vaccine data from IIS, which positions the VSD well for conducting quality assessments of vaccine safety. Efforts to improve the timely receipt of all vaccination data will improve capacity to conduct vaccine safety assessments within the VSD.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , Immunization , Information Systems , SARS-CoV-2 , United States , Vaccination/adverse effects , Vaccines/adverse effects
7.
MMWR Morb Mortal Wkly Rep ; 70(44): 1539-1544, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1502901

ABSTRACT

Previous infection with SARS-CoV-2 (the virus that causes COVID-19) or COVID-19 vaccination can provide immunity and protection from subsequent SARS-CoV-2 infection and illness. CDC used data from the VISION Network* to examine hospitalizations in adults with COVID-19-like illness and compared the odds of receiving a positive SARS-CoV-2 test result, and thus having laboratory-confirmed COVID-19, between unvaccinated patients with a previous SARS-CoV-2 infection occurring 90-179 days before COVID-19-like illness hospitalization, and patients who were fully vaccinated with an mRNA COVID-19 vaccine 90-179 days before hospitalization with no previous documented SARS-CoV-2 infection. Hospitalized adults aged ≥18 years with COVID-19-like illness were included if they had received testing at least twice: once associated with a COVID-19-like illness hospitalization during January-September 2021 and at least once earlier (since February 1, 2020, and ≥14 days before that hospitalization). Among COVID-19-like illness hospitalizations in persons whose previous infection or vaccination occurred 90-179 days earlier, the odds of laboratory-confirmed COVID-19 (adjusted for sociodemographic and health characteristics) among unvaccinated, previously infected adults were higher than the odds among fully vaccinated recipients of an mRNA COVID-19 vaccine with no previous documented infection (adjusted odds ratio [aOR] = 5.49; 95% confidence interval [CI] = 2.75-10.99). These findings suggest that among hospitalized adults with COVID-19-like illness whose previous infection or vaccination occurred 90-179 days earlier, vaccine-induced immunity was more protective than infection-induced immunity against laboratory-confirmed COVID-19. All eligible persons should be vaccinated against COVID-19 as soon as possible, including unvaccinated persons previously infected with SARS-CoV-2.


Subject(s)
COVID-19/diagnosis , COVID-19/immunology , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Female , Hospitalization/statistics & numerical data , Humans , Laboratories , Male , Middle Aged , SARS-CoV-2/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult
8.
JAMA Pediatr ; 176(1): 68-77, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1453520

ABSTRACT

Importance: The COVID-19 pandemic has affected routine vaccine delivery in the US and globally. The magnitude of these disruptions and their association with childhood vaccination coverage are unclear. Objectives: To compare trends in pediatric vaccination before and during the pandemic and to evaluate the proportion of children up to date (UTD) with vaccinations by age, race, and ethnicity. Design, Setting, and Participants: This surveillance study used a prepandemic-postpandemic control design with data from 8 health systems in California, Oregon, Washington, Colorado, Minnesota, and Wisconsin in the Vaccine Safety Datalink. Children from age groups younger than 24 months and 4 to 6, 11 to 13, and 16 to 18 years were included if they had at least 1 week of health system enrollment from January 5, 2020, through October 3, 2020, over periods before the US COVID-19 pandemic (January 5, 2020, through March 14, 2020), during age-limited preventive care (March 15, 2020, through May 16, 2020), and during expanded primary care (May 17, 2020, through October 3, 2020). These individuals were compared with those enrolled during analogous weeks in 2019. Exposures: This study evaluated UTD status among children reaching specific ages in February, May, and September 2020, compared with those reaching these ages in 2019. Main Outcomes and Measures: Weekly vaccination rates for routine age-specific vaccines and the proportion of children UTD for all age-specific recommended vaccines. Results: Of 1 399 708 children in 2019 and 1 402 227 in 2020, 1 371 718 were female (49.0%) and 1 429 979 were male (51.0%); 334 216 Asian individuals (11.9%), 900 226 were Hispanic individuals (32.1%), and 201 619 non-Hispanic Black individuals (7.2%). Compared with the prepandemic period and 2019, the age-limited preventive care period was associated with lower weekly vaccination rates, with ratios of rate ratios of 0.82 (95% CI, 0.80-0.85) among those younger than 24 months, 0.18 (95% CI, 0.16-0.20) among those aged 4 to 6 years, 0.16 (95% CI, 0.14-0.17) among those aged 11 to 13 years, and 0.10 (95% CI, 0.08-0.13) among those aged 16 to 18 years. Vaccination rates during expanded primary care remained lower for most ages (ratios of rate ratios: <24 months, 0.96 [95% CI, 0.93-0.98]; 11-13 years, 0.81 [95% CI, 0.76-0.86]; 16-18 years, 0.57 [95% CI, 0.51-0.63]). In September 2020, 74% (95% CI, 73%-76%) of infants aged 7 months and 57% (95% CI, 56%-58%) of infants aged 18 months were UTD vs 81% (95% CI, 80%-82%) and 61% (95% CI, 60%-62%), respectively, in September 2019. The proportion UTD was lowest in non-Hispanic Black children across most age groups, both during and prior to the COVID-19 pandemic (eg, in May 2019, 70% [95% CI, 64%-75%] of non-Hispanic Black infants aged 7 months were UTD vs 82% [95% CI, 81%-83%] in all infants aged 7 months combined). Conclusions and Relevance: As of September 2020, childhood vaccination rates and the proportion who were UTD remained lower than 2019 levels. Interventions are needed to promote catch-up vaccination, particularly in populations at risk for underimmunization.


Subject(s)
COVID-19/epidemiology , Vaccination Coverage/statistics & numerical data , Vaccination/statistics & numerical data , Vaccines/administration & dosage , Child , Child Health Services/organization & administration , Female , Humans , Immunization Programs/statistics & numerical data , Male , Time Factors
9.
MMWR Morb Mortal Wkly Rep ; 70(37): 1291-1293, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1441399

ABSTRACT

Data on COVID-19 vaccine effectiveness (VE) since the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, became the predominant circulating strain in the United States are limited (1-3). CDC used the VISION Network* to examine medical encounters (32,867) from 187 hospitals and 221 emergency departments (EDs) and urgent care (UC) clinics across nine states during June-August 2021, beginning on the date the Delta variant accounted for >50% of sequenced isolates in each medical facility's state. VISION Network methods have been published (4).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2 , Adolescent , Adult , Aged , Ambulatory Care Facilities/statistics & numerical data , COVID-19/epidemiology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Emergency Service, Hospital/statistics & numerical data , Hospitalization/statistics & numerical data , Humans , Middle Aged , United States/epidemiology , Young Adult
10.
N Engl J Med ; 385(15): 1355-1371, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1397961

ABSTRACT

BACKGROUND: There are limited data on the effectiveness of the vaccines against symptomatic coronavirus disease 2019 (Covid-19) currently authorized in the United States with respect to hospitalization, admission to an intensive care unit (ICU), or ambulatory care in an emergency department or urgent care clinic. METHODS: We conducted a study involving adults (≥50 years of age) with Covid-19-like illness who underwent molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We assessed 41,552 admissions to 187 hospitals and 21,522 visits to 221 emergency departments or urgent care clinics during the period from January 1 through June 22, 2021, in multiple states. The patients' vaccination status was documented in electronic health records and immunization registries. We used a test-negative design to estimate vaccine effectiveness by comparing the odds of a positive test for SARS-CoV-2 infection among vaccinated patients with those among unvaccinated patients. Vaccine effectiveness was adjusted with weights based on propensity-for-vaccination scores and according to age, geographic region, calendar time (days from January 1, 2021, to the index date for each medical visit), and local virus circulation. RESULTS: The effectiveness of full messenger RNA (mRNA) vaccination (≥14 days after the second dose) was 89% (95% confidence interval [CI], 87 to 91) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization, 90% (95% CI, 86 to 93) against infection leading to an ICU admission, and 91% (95% CI, 89 to 93) against infection leading to an emergency department or urgent care clinic visit. The effectiveness of full vaccination with respect to a Covid-19-associated hospitalization or emergency department or urgent care clinic visit was similar with the BNT162b2 and mRNA-1273 vaccines and ranged from 81% to 95% among adults 85 years of age or older, persons with chronic medical conditions, and Black or Hispanic adults. The effectiveness of the Ad26.COV2.S vaccine was 68% (95% CI, 50 to 79) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization and 73% (95% CI, 59 to 82) against infection leading to an emergency department or urgent care clinic visit. CONCLUSIONS: Covid-19 vaccines in the United States were highly effective against SARS-CoV-2 infection requiring hospitalization, ICU admission, or an emergency department or urgent care clinic visit. This vaccine effectiveness extended to populations that are disproportionately affected by SARS-CoV-2 infection. (Funded by the Centers for Disease Control and Prevention.).


Subject(s)
Ambulatory Care/statistics & numerical data , COVID-19 Vaccines , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19 Vaccines/immunology , Female , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Patient Readmission/statistics & numerical data , United States/epidemiology
11.
MMWR Morb Mortal Wkly Rep ; 69(19): 591-593, 2020 May 15.
Article in English | MEDLINE | ID: covidwho-209292

ABSTRACT

On March 13, 2020, the president of the United States declared a national emergency in response to the coronavirus disease 2019 (COVID-19) pandemic (1). With reports of laboratory-confirmed cases in all 50 states by that time (2), disruptions were anticipated in the U.S. health care system's ability to continue providing routine preventive and other nonemergency care. In addition, many states and localities issued shelter-in-place or stay-at-home orders to reduce the spread of COVID-19, limiting movement outside the home to essential activities (3). On March 24, CDC posted guidance emphasizing the importance of routine well child care and immunization, particularly for children aged ≤24 months, when many childhood vaccines are recommended.


Subject(s)
Coronavirus Infections/epidemiology , Pandemics , Pediatrics/organization & administration , Pneumonia, Viral/epidemiology , Vaccines/administration & dosage , Adolescent , COVID-19 , Child , Child, Preschool , Humans , Infant , Infant, Newborn , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL