Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Infection Prevention ; : 17571774211066786, 2022.
Article in English | Sage | ID: covidwho-1707369

ABSTRACT

BackgroundInfection control link nurses (ICLN) disseminate knowledge on infection prevention topics to their peers. Little is known about how they succeed and thereby contribute to infection prevention in daily practise.AimTo explore the experiences of infection control link nurses regarding their role in acute care hospitals and identify perceived facilitators and best practices.MethodsWe conducted a qualitative study with semi-structured individual and focus group interviews with ICLN. The effect of COVID-19 on the ICLN role was added as a topic in focus group interviews during the pandemic.ResultsTwenty-six ICLN working in acute care hospitals were interviewed. ICLN perceived their role as to identify, monitor, facilitate and inform their colleagues on infection prevention topics related to their ward. Their experiences vary from feeling challenged and wonder how to get started, to feeling confident and taking initiatives that lead to ward-based improvements. When inspired by each other and supported by infection control practitioners or managers, ICLN feel empowered to initiate more activities to improve practice. During the COVID-19 pandemic, ICLN felt their responsibilities were magnified. When transferred to another ward, the focus on the ICLN role seemed dispersed.DiscussionEmpowered ICLN adjust and operationalize infection prevention policies to fit the conditions of their specific wards and provide practical instructions and feedback to their peers which enable better compliance to infection prevention policies. Support and inspiration from other ICLN, infection control practitioners and management contribute to this empowerment and consequently to taking impactful initiatives to improve practice.

2.
Antimicrob Resist Infect Control ; 10(1): 137, 2021 09 26.
Article in English | MEDLINE | ID: covidwho-1440955

ABSTRACT

We describe the lessons learned during a SARS-CoV-2 variant-of-concern Alpha outbreak investigation at a normal care unit in a university hospital in Amsterdam in December 2020. The outbreak consisted of nine nurses and two roomed-in patient family members. (attack rate 18%). One nurse tested positive with a phylogenetically distinct variant, after a documented infection 83 days prior. Three key points were taken from this investigation. First, it was controlled by adherence to existing guidelines, despite increased transmissibility of the variant. Second, viral sequencing can inform transmission cluster inference, but the epidemiological context is essential to draw appropriate conclusions. Third, reinfections with Alpha variants can occur rapidly after primary infection.


Subject(s)
COVID-19/epidemiology , Reinfection/virology , COVID-19/virology , Cross Infection/epidemiology , Cross Infection/virology , Disease Outbreaks , Guideline Adherence , Humans , Infection Control , Inpatients , Netherlands , Nurses , Phylogeny , Reinfection/epidemiology , SARS-CoV-2/genetics
3.
JAMA Netw Open ; 4(7): e2118554, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1328587

ABSTRACT

Importance: It is unclear when, where, and by whom health care workers (HCWs) working in hospitals are infected with SARS-CoV-2. Objective: To determine how often and in what manner nosocomial SARS-CoV-2 infection occurs in HCW groups with varying exposure to patients with COVID-19. Design, Setting, and Participants: This cohort study comprised 4 weekly measurements of SARS-CoV-2-specific antibodies and collection of questionnaires from March 23 to June 25, 2020, combined with phylogenetic and epidemiologic transmission analyses at 2 university hospitals in the Netherlands. Included individuals were HCWs working in patient care for those with COVID-19, HCWs working in patient care for those without COVID-19, and HCWs not working in patient care. Data were analyzed from August through December 2020. Exposures: Varying work-related exposure to patients infected with SARS-CoV-2. Main Outcomes and Measures: The cumulative incidence of and time to SARS-CoV-2 infection, defined as the presence of SARS-CoV-2-specific antibodies in blood samples, were measured. Results: Among 801 HCWs, there were 439 HCWs working in patient care for those with COVID-19, 164 HCWs working in patient care for those without COVID-19, and 198 HCWs not working in patient care. There were 580 (72.4%) women, and the median (interquartile range) age was 36 (29-50) years. The incidence of SARS-CoV-2 was increased among HCWs working in patient care for those with COVID-19 (54 HCWs [13.2%; 95% CI, 9.9%-16.4%]) compared with HCWs working in patient care for those without COVID-19 (11 HCWs [6.7%; 95% CI, 2.8%-10.5%]; hazard ratio [HR], 2.25; 95% CI, 1.17-4.30) and HCWs not working in patient care (7 HCWs [3.6%; 95% CI, 0.9%-6.1%]; HR, 3.92; 95% CI, 1.79-8.62). Among HCWs caring for patients with COVID-19, SARS-CoV-2 cumulative incidence was increased among HCWs working on COVID-19 wards (32 of 134 HCWs [25.7%; 95% CI, 17.6%-33.1%]) compared with HCWs working on intensive care units (13 of 186 HCWs [7.1%; 95% CI, 3.3%-10.7%]; HR, 3.64; 95% CI, 1.91-6.94), and HCWs working in emergency departments (7 of 102 HCWs [8.0%; 95% CI, 2.5%-13.1%]; HR, 3.29; 95% CI, 1.52-7.14). Epidemiologic data combined with phylogenetic analyses on COVID-19 wards identified 3 potential HCW-to-HCW transmission clusters. No patient-to-HCW transmission clusters could be identified in transmission analyses. Conclusions and Relevance: This study found that HCWs working on COVID-19 wards were at increased risk for nosocomial SARS-CoV-2 infection with an important role for HCW-to-HCW transmission. These findings suggest that infection among HCWs deserves more consideration in infection prevention practice.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/genetics , Personnel, Hospital , Phylogeny , Population Surveillance , SARS-CoV-2/immunology , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Serological Testing , Cohort Studies , Female , Humans , Incidence , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL