Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330802

ABSTRACT

Objectives Primary care urgently needs treatments for COVID-19 patients because current options are limited, while these patients account for more than 90% of the people infected with SARS-CoV-2. Methods We evaluated a throat spray containing three Lactobacillaceae strains with broad antiviral properties in a randomized double-blind placebo-controlled trial. Seventy-eight eligible COVID-19 patients were randomized to verum (n=41) and placebo (n=37) within 96 hours of positive PCR-based SARS-CoV-2 diagnosis and per-protocol analysis was performed. Symptoms and severity were reported daily via an online diary. Combined nose-throat swabs and dried blood spots were collected at regular time points in the study. Results The daily reported symptoms were highly variable, with no added benefit for symptom resolution in the verum group. Specific monitoring of the applied lactobacilli strains showed that they were detectable via microbiome (27%) and qPCR analysis (82%) of the verum group. Their relative abundances were also negatively correlated with the acute symptom score. At the end of the trial, a trend towards lower SARS-CoV-2 viral loads was observed for the verum group (2/30, 6.7% positive) compared to the placebo group (7/27, 26% positive) (p = 0.07). Conclusions Despite a trend towards lower SARS-CoV-2 viral loads at the end of the trial and a negative correlation between relative abundances of the applied lactobacilli in the microbiome and acute symptoms, we did not observe a significant effect on overall symptom score for the verum group. This suggests that studies with earlier application of the spray in larger study populations are needed to further assess application potential.

2.
Viruses ; 14(3)2022 03 15.
Article in English | MEDLINE | ID: covidwho-1742731

ABSTRACT

Since the beginning of the COVID-19 pandemic, the wastewater-based epidemiology (WBE) of SARS-CoV-2 has been used as a complementary indicator to follow up on the trends in the COVID-19 spread in Belgium and in many other countries. To further develop the use of WBE, a multiplex digital polymerase chain reaction (dPCR) assay was optimized, validated and applied for the measurement of emerging SARS-CoV-2 variants of concern (VOC) in influent wastewater (IWW) samples. Key mutations were targeted in the different VOC strains, including SΔ69/70 deletion, N501Y, SΔ241 and SΔ157. The presented bioanalytical method was able to distinguish between SARS-CoV-2 RNA originating from the wild-type and B.1.1.7, B.1.351 and B.1.617.2 variants. The dPCR assay proved to be sensitive enough to detect low concentrations of SARS-CoV-2 RNA in IWW since the limit of detection of the different targets ranged between 0.3 and 2.9 copies/µL. This developed WBE approach was applied to IWW samples originating from different Belgian locations and was able to monitor spatio-temporal changes in the presence of targeted VOC strains in the investigated communities. The present dPCR assay developments were realized to bring added-value to the current national WBE of COVID-19 by also having the spatio-temporal proportions of the VoC in presence in the wastewaters.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Multiplex Polymerase Chain Reaction , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Waste Water
3.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327124

ABSTRACT

Respiratory viruses such as influenza viruses, respiratory syncytial virus (RSV), and coronaviruses initiate infection at the mucosal surfaces of the upper respiratory tract (URT), where the resident respiratory microbiome has an important gatekeeper function. In contrast to gut-targeting administration of beneficial bacteria against respiratory viral disease, topical URT administration of probiotics is currently underexplored, especially for the prevention and/or treatment of viral infections. Here, we report the selection and formulation of a broad-acting throat spray with live lactobacilli which induce interferon regulatory pathways and are able to inhibit respiratory viruses. Rational selection of Lactobacillaceae strains was based on safety, applicability, and potential antiviral and immunostimulatory efficacy in the URT. Three strains, Lacticaseibacillus casei AMBR2, Lacticaseibacillus rhamnosus GG and Lactiplantibacillus plantarum WCFS1 significantly reduced the cytopathogenic effects of RSV, influenza A/H1N1 and B viruses, and HCoV-229E coronavirus in co-culture models with bacteria, virus and host cells. Subsequently, these strains were formulated in a throat spray and human monocytes were employed to confirm the formulation process did not reduce the interferon regulatory pathway-inducing capacity. Administration of the throat spray in healthy volunteers revealed that the lactobacilli were capable of temporary colonization of the throat in a metabolically active form.

4.
Sci Total Environ ; 820: 153290, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1641658

ABSTRACT

Wastewater-based surveillance (WBS) for SARS-CoV-2 RNA is a promising complementary approach to monitor community viral circulation. A myriad of factors, however, can influence RNA concentrations in wastewater, impeding its epidemiological value. This article aims to provide an overview and discussion of factors up to the sampling stage that impact SARS-CoV-2 RNA concentration estimates in wastewater. To this end, a systematic review was performed in three databases (MEDLINE, Web of Science and Embase) and two preprint servers (MedRxiv and BioRxiv). Two authors independently screened and selected articles published between January 1, 2019 and May 4, 2021. A total of 22 eligible articles were included in this systematic review. The following factors up to sampling were identified to have an influence on SARS-CoV-2 RNA concentrations in wastewater and its interpretation: (i) shedding-related factors, including faecal shedding parameters (i.e. shedding pattern, recovery, rate, and load distribution), (ii) population size, (iii) in-sewer factors, including solid particles, organic load, travel time, flow rate, wastewater pH and temperature, and (iv) sampling strategy. In conclusion, factors influencing SARS-CoV-2 RNA concentration estimates in wastewater were identified and research gaps were discussed. The identification of these factors supports the need for further research on WBS for COVID-19.


Subject(s)
COVID-19 , Waste Water , COVID-19/epidemiology , Databases, Factual , Humans , RNA, Viral , SARS-CoV-2
5.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294504

ABSTRACT

Background SARS-CoV-2 human-to-animal transmission can lead to the establishment of novel reservoirs and the evolution of new variants with the potential to start new outbreaks in humans. Aim We tested Norway rats inhabiting the sewer system of Antwerp, Belgium, for the presence of SARS-CoV-2 following a local COVID-19 epidemic peak. In addition, we discuss the use and interpretation of SARS-CoV-2 serological tests on non-human samples. Methods Between November and December 2020, Norway rat oral swabs, feces and tissues from the sewer system of Antwerp were collected to be tested by RT-qPCR for the presence of SARS-CoV-2. Serum samples were screened for the presence of anti-SARS-CoV-2 IgG antibodies using a Luminex microsphere immunoassay (MIA). Samples considered positive were then checked for neutralizing antibodies using a conventional viral neutralization test (cVNT). Results The serum of 35 rats was tested by MIA showing 3 potentially positive sera that were later shown to be negative by cVNT. All tissue samples of 39 rats analyzed tested negative for SARS-CoV-2 RNA. Conclusion This is the first study that evaluates SARS-CoV-2 infection in urban rats. We can conclude that the sample of 39 rats had never been infected with SARS-CoV-2. We show that diagnostic serology tests can give misleading results when applied on non-human samples. SARS-CoV-2 monitoring activities should continue due to the emergence of new variants prone to infect Muridae rodents.

6.
Trends Mol Med ; 27(6): 538-553, 2021 06.
Article in English | MEDLINE | ID: covidwho-1187821

ABSTRACT

Emerging evidence suggests that microbial therapeutics can prevent and treat respiratory viral diseases, especially when applied directly to the airways. This review presents established beneficial effects of locally administered microbial therapeutics against respiratory viral diseases and the inferred related molecular mechanisms. Several mechanisms established in the intestinal probiotics field as well as novel, niche-specific insights are relevant in the airways. Studies at cellular and organism levels highlight biologically plausible but strain-specific and host and virus context-dependent mechanisms, underlying the potential of beneficial bacteria. Large-scale clinical studies can now be rationally designed to provide a bench-to-bedside translation of the multifactorial bacterial mechanisms within the host respiratory tract, to diminish the incidence and severity of viral infections and the concomitant complications.


Subject(s)
Gastrointestinal Microbiome , Immune System/drug effects , Probiotics/therapeutic use , Respiratory Tract Infections/drug therapy , Virus Diseases/drug therapy , Animals , Humans , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Virus Diseases/immunology , Virus Diseases/virology
7.
Transbound Emerg Dis ; 2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1295139

ABSTRACT

SARS-CoV-2 human-to-animal transmission can lead to the establishment of novel reservoirs and the evolution of new variants with the potential to start new outbreaks in humans. We tested Norway rats inhabiting the sewer system of Antwerp, Belgium, for the presence of SARS-CoV-2 following a local COVID-19 epidemic peak. In addition, we discuss the use and interpretation of SARS-CoV-2 serological tests on non-human samples. Between November and December 2020, Norway rat oral swabs, faeces and tissues from the sewer system of Antwerp were collected to be tested by RT-qPCR for the presence of SARS-CoV-2. Serum samples were screened for the presence of anti-SARS-CoV-2 IgG antibodies using a Luminex microsphere immunoassay (MIA). Samples considered positive were then checked for neutralizing antibodies using a conventional viral neutralization test (cVNT). The serum of 35 rats was tested by MIA showing three potentially positive sera that were later negative by cVNT. All tissue samples of 39 rats analysed tested negative for SARS-CoV-2 RNA. This is the first study that evaluates SARS-CoV-2 infection in urban rats. We can conclude that the sample of rats analysed had never been infected with SARS-CoV-2. However, monitoring activities should continue due to the emergence of new variants prone to infect Muridae rodents.

8.
Sci Total Environ ; 789: 148043, 2021 May 26.
Article in English | MEDLINE | ID: covidwho-1243225

ABSTRACT

Wastewater-based epidemiology of SARS-CoV-2 could play a role in monitoring the spread of the virus in the population and controlling possible outbreaks. However, sensitive sample preparation and detection methods are necessary to detect trace levels of SARS-CoV-2 RNA in influent wastewater (IWW). Unlike predecessors, method optimization of a SARS-CoV-2 RNA concentration and detection procedure was performed with IWW samples with high viral SARS-CoV-2 RNA loads. This is of importance since the SARS-CoV-2 genome in IWW might have already been subject to in-sewer degradation into smaller genome fragments or might be present in a different form (e.g. cell debris, …). Centricon Plus-70 (100 kDa) centrifugal filter devices resulted in the lowest and most reproducible Ct-values for SARS-CoV-2 RNA. Lowering the molecular weight cut-off did not improve our limit of detection and quantification (approximately 100 copies/µL for all genes). Quantitative polymerase chain reaction (qPCR) was employed for the amplification of the N1, N2, N3 and E-gene fragments. This is one of the first studies to apply digital polymerase chain reaction (dPCR) for the detection of SARS-CoV-2 RNA in IWW. dPCR showed high variability at low concentration levels (100 copies/µL), indicating that variability in bioanalytical methods for wastewater-based epidemiology of SARS-CoV-2 might be substantial. dPCR results in IWW were in line with the results found with qPCR. On average, the N2-gene fragment showed high in-sample stability in IWW for 10 days of storage at 4 °C. Between-sample variability was substantial due to the low native concentrations in IWW. Additionally, the E-gene fragment proved to be less stable compared to the N2-gene fragment and showed higher variability. Freezing the IWW samples resulted in a 10-fold decay of loads of the N2- and E-gene fragment in IWW.

SELECTION OF CITATIONS
SEARCH DETAIL