Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Front Microbiol ; 13: 884034, 2022.
Article in English | MEDLINE | ID: covidwho-1847188

ABSTRACT

Since the outbreak of the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), public health worldwide has been greatly threatened. The development of an effective treatment for this infection is crucial and urgent but is hampered by the incomplete understanding of the viral infection mechanisms and the lack of specific antiviral agents. We previously reported that teicoplanin, a glycopeptide antibiotic that has been commonly used in the clinic to treat bacterial infection, significantly restrained the cell entry of Ebola virus, SARS-CoV, and MERS-CoV by specifically inhibiting the activity of cathepsin L (CTSL). Here, we found that the cleavage sites of CTSL on the spike proteins of SARS-CoV-2 were highly conserved among all the variants. The treatment with teicoplanin suppressed the proteolytic activity of CTSL on spike and prevented the cellular infection of different pseudotyped SARS-CoV-2 viruses. Teicoplanin potently prevented the entry of SARS-CoV-2 into the cellular cytoplasm with an IC50 of 2.038 µM for the Wuhan-Hu-1 reference strain and an IC50 of 2.116 µM for the SARS-CoV-2 (D614G) variant. The pre-treatment of teicoplanin also prevented SARS-CoV-2 infection in hACE2 mice. In summary, our data reveal that CTSL is required for both SARS-CoV-2 and SARS-CoV infection and demonstrate the therapeutic potential of teicoplanin for universal anti-CoVs intervention.

2.
China CDC Weekly ; 4:1-2, 2022.
Article in English | China CDC Weekly | ID: covidwho-1848172

ABSTRACT

On April 29, 2022, a flight arrived at Baiyun International Airport, Guangzhou City, Guangdong Province, from Amsterdam Schiphol Airport, Netherlands. After the first test of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid at the airport, all passengers were admitted to a quarantine hotel for a routine 14-day medical observation. On April 30, one of the passengers (a 20-year-old Chinese female) was reported positive for coronavirus disease 2019 (COVID-19), and then a nasopharyngeal swab sample was immediately retested on May 1 and reported positive. The patient was fully vaccinated against COVID-19 and completed 14 days of quarantine before flying to China. She denied any history of exposure to COVID-19 cases. After diagnosis, the patient was sent to Foshan Fourth People’s Hospital for treatment. On May 4, 2022, the viral genomic sequence of the patient was obtained using the Illumina MiniSeq platform (Illumina, San Diego, CA, USA), and genotyping results showed that the genome belonged to the Omicron/variant of concern (VOC) sublineage BA.4, with a total of 30 amino acid mutations (V3G, T19I, A27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K) and 5 deletions (L24del, P25del, P26del, H69del, V70del) in the Spike protein gene. The phylogenetic tree indicates that the sequenced BA.4 has high similarity to the genome detected in Denmark on May 4, 2022 (GISAID: EPI_ISL_12648960) (Figure 1). The sequence has been deposited in the National Genomics Data Center (under the accession number WGS025540). On May 4, 2022, the World Health Organization reminded to closely monitor Omicron BA.4 subvariants (1). BA.4 is driving the upsurge in South Africa and has rapidly replaced BA.2, with over 50% of sequenced cases since the first week of April 2022 (2). Compared to BA.2, the BA.4 subvariants also showed stronger immune escape to the plasma of 3-dose vaccinees, even vaccinated BA.1 convalescent plasma (3-4). Cases of BA.4 infection have been reported in at least 20 countries, mainly from South Africa (62.39%) (5-6). Researchers are focusing on this subvariant and trying to learn more.

3.
Signal Transduct Target Ther ; 6(1): 427, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1795805

ABSTRACT

Abnormal glucose and lipid metabolism in COVID-19 patients were recently reported with unclear mechanism. In this study, we retrospectively investigated a cohort of COVID-19 patients without pre-existing metabolic-related diseases, and found new-onset insulin resistance, hyperglycemia, and decreased HDL-C in these patients. Mechanistically, SARS-CoV-2 infection increased the expression of RE1-silencing transcription factor (REST), which modulated the expression of secreted metabolic factors including myeloperoxidase, apelin, and myostatin at the transcriptional level, resulting in the perturbation of glucose and lipid metabolism. Furthermore, several lipids, including (±)5-HETE, (±)12-HETE, propionic acid, and isobutyric acid were identified as the potential biomarkers of COVID-19-induced metabolic dysregulation, especially in insulin resistance. Taken together, our study revealed insulin resistance as the direct cause of hyperglycemia upon COVID-19, and further illustrated the underlying mechanisms, providing potential therapeutic targets for COVID-19-induced metabolic complications.


Subject(s)
COVID-19/blood , Hyperglycemia/blood , Insulin Resistance , Lipid Metabolism , Lipids/blood , SARS-CoV-2/metabolism , Adult , Aged , Biomarkers/blood , COVID-19/complications , Female , Humans , Hyperglycemia/etiology , Male , Middle Aged , Retrospective Studies
4.
Signal Transduct Target Ther ; 7(1): 114, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1778593

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of novel coronavirus disease (COVID-19). The neutralizing monoclonal antibodies (mAbs) targeting the receptor-binding domain (RBD) of SARS-CoV-2 are among the most promising strategies to prevent and treat COVID-19. However, SARS-CoV-2 variants of concern (VOCs) profoundly reduced the efficacies of most of mAbs and vaccines approved for clinical use. Herein, we demonstrated mAb 35B5 efficiently neutralizes both wild-type (WT) SARS-CoV-2 and VOCs, including B.1.617.2 (delta) variant, in vitro and in vivo. Cryo-electron microscopy (cryo-EM) revealed that 35B5 neutralizes SARS-CoV-2 by targeting a unique epitope that avoids the prevailing mutation sites on RBD identified in circulating VOCs, providing the molecular basis for its pan-neutralizing efficacy. The 35B5-binding epitope could also be exploited for the rational design of a universal SARS-CoV-2 vaccine.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/chemistry , Antibodies, Viral/chemistry , COVID-19 , Cryoelectron Microscopy , Humans , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
5.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1762251

ABSTRACT

In contrast to dexamethasone, the clinical efficacy of methylprednisolone (MP) remains controversial, and a systems biology study on its mechanism is lacking. In this study, a total of 38 severe COVID-19 patients were included. The demographics, clinical characteristics, and severity biomarkers including C-reactive protein (CRP), d-dimer, albumin, and Krebs von den Lungen 6 of patients receiving MP (n=26, 40 mg or 80 mg daily for 3-5 days) and supportive therapy (n=12) were compared. Longitudinal measurements of 92 cytokines in MP group from admission to over six months after discharge were performed by multiplex Proximity Extension Assay. The results showed that demographics, baseline clinical characteristics were similar in MP and non-MP groups. No death occurred and the hospital stays between the two groups were similar. Kinetics studies showed that MP was not better than supportive therapy at improving the four severity biomarkers. Cytokines in MP group were characterized by five clusters according to their baseline levels and responses to MP. The immunological feature of severe COVID-19 could be defined by the “core signature” cytokines in cluster 2: MCP-3, IL-6, IFN-γ, and CXCL10, which strongly correlated with each other and CRP, and are involved in cytokine release storm. The “core signature” cytokines were significantly upregulated at baseline and remained markedly elevated after MP treatment. Our work showed a short course of MP therapy could not rapidly improve the immune disorders among severe COVID-19 patients or clinical outcomes, also confirmed “core signature” cytokines, as severity biomarkers similar to CRP, could be applied to evaluate clinical treatment effect.

6.
Cell Host Microbe ; 30(6): 887-895.e4, 2022 06 08.
Article in English | MEDLINE | ID: covidwho-1763630

ABSTRACT

The SARS-CoV-2 Omicron variant harbors more than 30 mutations in the spike protein, leading to immune evasion from many therapeutic neutralizing antibodies. We reveal that a receptor-binding domain (RBD)-targeting monoclonal antibody, 35B5, exhibits potent neutralizing efficacy to Omicron. Cryo-electron microscopy structures of the extracellular domain trimer of Omicron spike with 35B5 Fab reveal that Omicron spike exhibits tight trimeric packing and high thermostability, as well as significant antigenic shifts and structural changes, within the RBD, N-terminal domain (NTD), and subdomains 1 and 2. However, these changes do not affect targeting of the invariant 35B5 epitope. 35B5 potently neutralizes SARS-CoV-2 Omicron and other variants by causing significant conformational changes within a conserved N-glycan switch that controls the transition of RBD from the "down" state to the "up" state, which allows recognition of the host entry receptor ACE2. This mode of action and potent neutralizing capacity of 35B5 indicate its potential therapeutic application for SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Epitopes , Humans , Polysaccharides , Spike Glycoprotein, Coronavirus
7.
Adv Sci (Weinh) ; 9(11): e2105378, 2022 04.
Article in English | MEDLINE | ID: covidwho-1680239

ABSTRACT

The SARS-CoV-2 Delta (B.1.617.2) strain is a variant of concern (VOC) that has become the dominant strain worldwide in 2021. Its transmission capacity is approximately twice that of the original strain, with a shorter incubation period and higher viral load during infection. Importantly, the breakthrough infections of the Delta variant have continued to emerge in the first-generation vaccine recipients. There is thus an urgent need to develop a novel vaccine with SARS-CoV-2 variants as the major target. Here, receptor binding domain (RBD)-conjugated nanoparticle vaccines targeting the Delta variant, as well as the early and Beta/Gamma strains, are developed. Under both a single-dose and a prime-boost strategy, these RBD-conjugated nanoparticle vaccines induce the abundant neutralizing antibodies (NAbs) and significantly protect hACE2 mice from infection by the authentic SARS-CoV-2 Delta strain, as well as the early and Beta strains. Furthermore, the elicitation of the robust production of broader cross-protective NAbs against almost all the notable SARS-CoV-2 variants including the Omicron variant in rhesus macaques by the third re-boost with trivalent vaccines is found. These results suggest that RBD-based monovalent or multivalent nanoparticle vaccines provide a promising second-generation vaccine strategy for SARS-CoV-2 variants.


Subject(s)
COVID-19 , Nanoparticles , Animals , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Macaca mulatta/metabolism , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Conjugate
8.
Cell Metab ; 34(3): 424-440.e7, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1676683

ABSTRACT

Coronavirus disease 2019 (COVID-19) represents a systemic disease that may cause severe metabolic complications in multiple tissues including liver, kidney, and cardiovascular system. However, the underlying mechanisms and optimal treatment remain elusive. Our study shows that impairment of ACE2 pathway is a key factor linking virus infection to its secondary metabolic sequelae. By using structure-based high-throughput virtual screening and connectivity map database, followed with experimental validations, we identify imatinib, methazolamide, and harpagoside as direct enzymatic activators of ACE2. Imatinib and methazolamide remarkably improve metabolic perturbations in vivo in an ACE2-dependent manner under the insulin-resistant state and SARS-CoV-2-infected state. Moreover, viral entry is directly inhibited by these three compounds due to allosteric inhibition of ACE2 binding to spike protein on SARS-CoV-2. Taken together, our study shows that enzymatic activation of ACE2 via imatinib, methazolamide, or harpagoside may be a conceptually new strategy to treat metabolic sequelae of COVID-19.


Subject(s)
COVID-19/drug therapy , Imatinib Mesylate/therapeutic use , Metabolic Diseases/drug therapy , Methazolamide/therapeutic use , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Down-Regulation/drug effects , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Imatinib Mesylate/pharmacology , Male , Metabolic Diseases/metabolism , Metabolic Diseases/virology , Methazolamide/pharmacology , Mice , Mice, Inbred C57BL , Mice, Obese , Mice, Transgenic , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects
9.
Cell Rep ; 38(3): 110256, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1588136

ABSTRACT

Inoculation against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing worldwide. However, the emergence of SARS-CoV-2 variants could cause immune evasion. We developed a bivalent nanoparticle vaccine that displays the receptor binding domains (RBDs) of the D614G and B.1.351 strains. With a prime-boost or a single-dose strategy, this vaccine elicits a robust neutralizing antibody and full protection against infection with the authentic D614G or B.1.351 strain in human angiotensin-converting enzyme 2 transgene mice. Interestingly, 8 months after inoculation with the D614G-specific vaccine, a new boost with this bivalent vaccine potently elicits cross-neutralizing antibodies for SARS-CoV-2 variants in rhesus macaques. We suggest that the D614G/B.1.351 bivalent vaccine could be used as an initial single dose or a sequential enforcement dose to prevent infection with SARS-CoV-2 and its variants.


Subject(s)
COVID-19/prevention & control , Cross Protection , SARS-CoV-2/immunology , Vaccines, Combined/therapeutic use , Animals , CHO Cells , COVID-19 Vaccines/chemical synthesis , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Chlorocebus aethiops , Cricetulus , Cross Protection/immunology , Female , HEK293 Cells , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Nanoparticles , Vaccination/methods , Vaccines, Combined/chemical synthesis , Vaccines, Combined/immunology , Vero Cells
10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293463

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of novel corona virus disease (COVID-19). The neutralizing monoclonal antibodies (mAbs) targeting the receptor binding domain (RBD) of SARS-CoV-2 are among the most promising strategies to prevent and treat COVID-19. However, SARS-CoV-2 variants of concern (VOCs) profoundly reduced the efficacies of most of mAbs and vaccines approved for clinical use. Herein, we demonstrated mAb 35B5 efficiently neutralizes both wild-type (WT) SARS-CoV-2 and VOCs, including B.1.617.2 (delta) variant, in vitro and in vivo . Cryo-electron microscopy (cryo-EM) revealed that 35B5 neutralizes SARS-CoV-2 by targeting a unique epitope that avoids the prevailing mutation sites on RBD identified in circulating VOCs, providing the molecular basis for its pan-neutralizing efficacy. The 35B5-binding epitope could also be exploited for the rational design of a universal SARS-CoV-2 vaccine.

11.
J Clin Microbiol ; 59(11): e0092121, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1480235

ABSTRACT

We report that there is a recent global expansion of numerous independent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with mutation L452R in the receptor-binding domain (RBD) of the spike protein. The massive emergence of L452R variants was first linked to lineage B.1.427/B.1.429 (clade 21C) that has been spreading in California since November and December 2020, originally named CAL.20C and currently variant of interest epsilon. By PCR amplification and Sanger sequencing of a 541-base fragment coding for amino acids 414 to 583 of the RBD from a collection of clinical specimens, we identified a separate L452R variant that also recently emerged in California but derives from the lineage B.1.232, clade 20A (named CAL.20A). Notably, CAL.20A caused an infection in gorillas in the San Diego Zoo, reported in January 2021. Unlike the epsilon variant that carries two additional mutations in the N-terminal domain of spike protein, L452R is the only mutation found in the spike proteins of CAL.20A. Based on genome-wide phylogenetic analysis, emergence of both viral variants was specifically triggered by acquisition of L452R, suggesting a strong positive selection for this mutation. Global analysis revealed that L452R is nearly omnipresent in a dozen independently emerged lineages, including the most recent variants of concern/interest delta, kappa, epsilon and iota, with the lambda variant carrying L452Q. L452 is in immediate proximity to the angiotensin-converting enzyme 2 (ACE2) interaction interface of RBD. It was reported that the L452R mutation is associated with immune escape and could result in a stronger cell attachment of the virus, with both factors likely increasing viral transmissibility, infectivity, and pathogenicity.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Mutation , Phylogeny , Protein Binding , Spike Glycoprotein, Coronavirus/genetics
12.
Front Immunol ; 12: 751584, 2021.
Article in English | MEDLINE | ID: covidwho-1463475

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of novel coronavirus disease (COVID-19). Though vaccines and neutralizing monoclonal antibodies (mAbs) have been developed to fight COVID-19 in the past year, one major concern is the emergence of SARS-CoV-2 variants of concern (VOCs). Indeed, SARS-CoV-2 VOCs such as B.1.1.7 (UK), B.1.351 (South Africa), P.1 (Brazil), and B.1.617.1 (India) now dominate the pandemic. Herein, we found that binding activity and neutralizing capacity of sera collected from convalescent patients in early 2020 for SARS-CoV-2 VOCs, but not non-VOC variants, were severely blunted. Furthermore, we observed evasion of SARS-CoV-2 VOCs from a VH3-30 mAb 32D4, which was proved to exhibit highly potential neutralization against wild-type (WT) SARS-CoV-2. Thus, these results indicated that SARS-CoV-2 VOCs might be able to spread in convalescent patients and even harbor resistance to medical countermeasures. New interventions against these SARS-CoV-2 VOCs are urgently needed.


Subject(s)
COVID-19/immunology , Mutation/genetics , SARS-CoV-2/physiology , Adult , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/genetics , COVID-19/therapy , Female , Humans , Immune Evasion , Immunization, Passive , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
13.
EClinicalMedicine ; 40: 101129, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1401440

ABSTRACT

BACKGROUND: A novel variant of SARS-CoV-2, the Delta variant of concern (VOC, also known as lineage B.1.617.2), is fast becoming the dominant strain globally. We reported the epidemiological, viral, and clinical characteristics of hospitalized patients infected with the Delta VOC during the local outbreak in Guangzhou, China. METHODS: We extracted the epidemiological and clinical information pertaining to the 159 cases infected with the Delta VOC across seven transmission generations between May 21 and June 18, 2021. The whole chain of the Delta VOC transmission was described. Kinetics of viral load and clinical characteristics were compared with a cohort of wild-type infection in 2020 admitted to the Guangzhou Eighth People's Hospital. FINDINGS: There were four transmission generations within the first ten days. The Delta VOC yielded a significantly shorter incubation period (4.0 vs. 6.0 days), higher viral load (20.6 vs. 34.0, cycle threshold of the ORF1a/b gene), and a longer duration of viral shedding in pharyngeal swab samples (14.0 vs. 8.0 days) compared with the wild-type strain. In cases with critical illness, the proportion of patients over the age of 60 was higher in the Delta VOC group than in the wild-type strain (100.0% vs. 69.2%, p = 0.03). The Delta VOC had a higher risk than wild-type infection in deterioration to critical status (hazards ratio 2.98 [95%CI 1.29-6.86]; p = 0.01). INTERPRETATION: Infection with the Delta VOC is characterized by markedly increased transmissibility, viral loads and risk of disease progression compared with the wild-type strain, calling for more intensive prevention and control measures to contain future outbreaks. FUNDING: National Grand Program, National Natural Science Foundation of China, Guangdong Provincial Department of Science and Technology, Guangzhou Laboratory.

15.
Gut ; 71(1): 229, 2022 01.
Article in English | MEDLINE | ID: covidwho-1276976
16.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 43(2): 216-221, 2021 Apr 28.
Article in Chinese | MEDLINE | ID: covidwho-1225868

ABSTRACT

Objective To analyze the CT characteristics of consolidation type of pulmonary cryptococcosis in immunocompetent patients,and thus improve the diagnosis of this disease. Methods A total of 20 cases with consolidation-type pulmonary cryptococcosis confirmed by pathological examinations were studied.Each patient underwent breath-hold multislice spiral CT,and 10 patients underwent contrast enhanced CT.The data including lesion number,lesion distribution,lesion density,performance of enhanced CT scan,accompanying signs,and prognosis were analyzed. Results The occurrence rates of single and multiple lesions were 80.0%(n=16)and 20.0%(n=4),respectively.In all the 16 multiple-lesion patients,the occurrence rate of unilateral lobar distribution was 56.0%(n=9).The 76 measurable lesions mainly presented subpleural distribution(71.1%,n=54)and lower pulmonary distribution(75.0%,n=57).A total of 39 lesions were detected in the 10 patients received contrast enhanced CT,in which 31 lesions(79.5%)showed homogeneous enhancement,34 lesions(87.2%)showed moderate enhancement,and all the lesions manifested angiogram sign.Consolidation lesions were accompanied by many CT signs,of which air bronchogram sign had the occurrence rate of 63.2%(n=48),including types Ⅲ(n =37)and Ⅳ(n=11).Other signs included halo signs(43/76,56.6%),vacuoles or cavities(9/76,11.8%),pleural thickening(14/20,70.0%),and pleural effusion(2/20,10.0%).After treatment,the lesions of 7 patients were basically absorbed and eventually existed in the form of fibrosis. Conclusions The lesions in the immunocompetent patients with consolidation type of pulmonary cryptococcosis usually occur in the lower lobe and close to the pleura,mainly presenting unilateral distribution.The CT angiogram signs,proximal air bronchogram signs,and halo signs are the main features of this disease,which contribute to the diagnosis.


Subject(s)
COVID-19 , Cryptococcosis , Lung Diseases, Fungal , Cryptococcosis/diagnostic imaging , Humans , Lung , Lung Diseases, Fungal/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed
18.
J Food Prot ; 84(3): 352-358, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1067879

ABSTRACT

ABSTRACT: The SARS-CoV-2 pandemic has presented new challenges to food manufacturers. During the early phase of the pandemic, several large outbreaks of coronavirus disease 2019 (COVID-19) occurred in food manufacturing plants resulting in deaths and economic loss, with approximately 15% of personnel diagnosed as asymptomatic for COVID-19. Spread by asymptomatic and presymptomatic individuals has been implicated in large outbreaks of COVID-19. In March 2020, we assisted in implementation of environmental monitoring programs for SARS-CoV-2 in zones 3 and 4 of 116 food production facilities. All participating facilities had already implemented measures to prevent symptomatic personnel from coming to work. During the study period, from 17 March to 3 September 2020, 1.23% of the 22,643 environmental samples tested positive for SARS-CoV-2, suggesting that infected individuals were actively shedding virus. Virus contamination was commonly found on frequently touched surfaces such as doorknobs, handles, table surfaces, and sanitizer dispensers. Most processing plants managed to control their environmental contamination when they became aware of the positive findings. Comparisons of positive test results for plant personnel and environmental surfaces in one plant revealed a close correlation. Our work illustrates that environmental monitoring for SARS-CoV-2 can be used as a surrogate for identifying the presence of asymptomatic and presymptomatic personnel in workplaces and may aid in controlling infection spread.


Subject(s)
COVID-19 , SARS-CoV-2 , Environmental Monitoring , Humans , Plants, Edible , Prevalence
19.
J Med Virol ; 93(4): 2505-2512, 2021 04.
Article in English | MEDLINE | ID: covidwho-1023298

ABSTRACT

To investigate the dynamic changes of Krebs von den Lungen-6 (KL-6) among patients with coronavirus disease 2019 (COVID-19) and the role of KL-6 as a noninvasive biomarker for predicting long-term lung injury, the clinical information and laboratory tests of 166 COVID-19 patients were collected, and a correlation analysis between KL-6 and other parameters was conducted. There were 17 (10.2%, 17/166) severe/critical and 149 (89.8%, 149/166) mild COVID-19 patients in our cohort. Serum KL-6 was significantly higher in severe/critical COVID-19 patients than in mild patients (median 898.0 vs. 451.2 U/ml, p < .001). KL-6 was next confirmed to be a sensitive and specific biomarker for distinguishing mild and severe/critical patients and correlate to computed tomography lung lesions areas. Serum KL-6 concentration during the follow-up period (>100 days postonset) was well correlated to those concentrations within 10 days postonset (Pearson r = .867, p < .001), indicating the prognostic value of KL-6 levels in predicting lung injury after discharge. Finally, elevated KL-6 was found to be significantly correlated to coagulation disorders, and T cells subsets dysfunctions. In summary, serum KL-6 is a biomarker for assessing COVID-19 severity and predicting the prognosis of lung injury of discharged patients.


Subject(s)
COVID-19/blood , Lung Injury/blood , Mucin-1/blood , Adult , Aged , Biomarkers/blood , COVID-19/diagnostic imaging , Female , Humans , Lung/diagnostic imaging , Lung/physiopathology , Lung Injury/diagnostic imaging , Lung Injury/physiopathology , Male , Middle Aged , Prognosis , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL