Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335275

ABSTRACT

While SARS-CoV-2 pathogenesis has been intensively investigated, the host mechanisms of viral clearance and inflammation resolution are still elusive because of the ethical limitation of human studies based on COVID-19 convalescents. Here we infected Syrian hamsters by authentic SARS-CoV-2 and built an ideal model to simulate the natural recovery process of SARS-CoV-2 infection from severe pneumonia 1,2 . We developed and applied a spatial transcriptomic sequencing technique with subcellular resolution and tissue-scale extensibility, i.e. , Stereo-seq 3 , together with single-cell RNA sequencing (scRNA-seq), to the entire lung lobes of 45 hamsters and obtained an elaborate map of the pulmonary spatiotemporal changes from acute infection, severe pneumonia to the late viral clearance and inflammation resolution. While SARS-CoV-2 infection caused massive damages to the hamster lungs, including naïve T cell infection and deaths related to lymphopenia, we identified a group of monocyte-derived proliferating Slamf9 + Spp1 + macrophages, which were SARS-CoV-2 infection-inducible and cell death-resistant, recruiting neutrophils to clear viruses together. After viral clearance, the Slamf9 + Spp1 + macrophages differentiated into Trem2 + and Fbp1 + macrophages, both responsible for inflammation resolution and replenishment of alveolar macrophages. The existence of this specific macrophage subpopulation and its descendants were validated by RNAscope in hamsters, immunofluorescence in hACE2 mice, and public human autopsy scRNA-seq data of COVID-19 patients. The spatiotemporal landscape of SARS-CoV-2 infection in hamster lungs and the identification of Slamf9 + Spp1 + macrophages that is pivotal to viral clearance and inflammation resolution are important to better understand the critical molecular and cellular players of COVID-19 host defense and also develop potential interventions of COVID-19 immunopathology.

2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-334217

ABSTRACT

Background With the recent ongoing global COVID-19 pandemic and political divide in the United States (US), there is an urgent need to address the soaring mental well-being problems and to promote positive well-being. The Warwick-Edinburgh Mental Well-being Scale (WEMWBS) measures the positive aspects of mental health. Previous studies confirmed its construct validity, reliability, and unidimensionality with confirmatory factor analysis. Four studies have performed a Rasch analysis on the WEMWBS, but none of them tested adults in the US. The goals of our study are to use Rasch analysis to validate the WEMWBS in the general US population and in adults with stroke. Methods We recruited community-dwelling adults and adults with chronic stroke with upper limb hemiplegia or hemiparesis. We used the Rasch Unidimensional Measurement Model (RUMM) 2030 software to evaluate item and person fit, targeting, person separation reliability (PSR), and differential item functioning (DIF) for sample sizes of at least 200 persons in each subgroup. Results After deleting two items, the WEMBS analyzed in our 553 community-dwelling adults (average age 51.22±17.18 years;358 women) showed an excellent PSR=0.91 as well as person and item fit, but the items are too easy for this population (person mean location=2.17±2.00). There was no DIF for sex, mental health, or practicing breathing exercises. In the 37 adults with chronic stroke (average age 58±13;11 women) the WEMWBS had a good item and person fit, and PSR=0.92, but the items were too easy for this group as well (person mean location=3.13±2.00). Conclusions The WEMWBS had good item and person fit but the targeting is off when used in community-dwelling adults and adults with stroke in the US. Adding more difficult items might improve the targeting and capture a broader range of positive mental wellbeing in both populations. Our pilot data in adults with stroke needs to be confirmed in a larger sample size.

3.
Signal Transduct Target Ther ; 7(1): 124, 2022 Apr 18.
Article in English | MEDLINE | ID: covidwho-1795804

ABSTRACT

Variants of concern (VOCs) like Delta and Omicron, harbor a high number of mutations, which aid these viruses in escaping a majority of known SARS-CoV-2 neutralizing antibodies (NAbs). In this study, Rhesus macaques immunized with 2-dose inactivated vaccines (Coronavac) were boosted with an additional dose of homologous vaccine or an RBD-subunit vaccine, or a bivalent inactivated vaccine (Beta and Delta) to determine the effectiveness of sequential immunization. The booster vaccination significantly enhanced the duration and levels of neutralizing antibody titers against wild-type, Beta, Delta, and Omicron. Animals administered with an indicated booster dose and subsequently challenged with Delta or Omicron variants showed markedly reduced viral loads and improved histopathological profiles compared to control animals, indicating that sequential immunization could protect primates against Omicron. These results suggest that sequential immunization of inactivated vaccines or polyvalent vaccines could be a potentially effective countermeasure against newly emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Macaca mulatta , SARS-CoV-2/genetics , Vaccination , Vaccines, Inactivated/genetics
4.
Protein Cell ; 2022 Apr 04.
Article in English | MEDLINE | ID: covidwho-1773029

ABSTRACT

SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.

5.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-331858

ABSTRACT

Background: Waning of neutralizing titers and decline of protection shorter after the second dose of COVID-19 vaccines was observed, including China-made inactivated vaccines. Efficacy of a heterologous boosting using one dose recombinant SARS-CoV-2 fusion protein vaccine (V-01) in inactivated vaccine-primed population was studied, aimed to restore the immunity. Methods: A randomized, double-blind and placebo-controlled phase Ⅲ trial was conducted in healthy people aged 18 years or older in Pakistan and Malaysia. Each eligible participant received one dose of V-01 vaccine developed by Livzon Mabpharm Inc . or placebo 3-6 months after the 2-dose primary regimen, and was monitored for safety and efficacy. The primary endpoint was protection against confirmed symptomatic SARS-CoV-2 infection. Results: A total of 10,218 participants were randomly assigned to receive vaccine or placebo. Virus-neutralizing antibodies were assessed in 419 participants. A dramatical increase (11.3-fold;128.3 to 1452.8) of neutralizing titers was measured in V-01 group at 14 days after the booster. Over the two months surveillance, vaccine efficacy was 47.8% (95%CI: 22.6 to 64.7) according to the intention-to-treat principle. The most common adverse events were transient, mild-to-moderate pain at the injection site, fever, headache, and fatigue. Serious adverse events occurred almost equally in V-01 (0.12%) and placebo (0.16%) groups. Conclusion: The heterologous boosting with V-01 vaccine was safe, efficacious, and could elicit robust humoral immunity under the epidemic of the Omicron variant.

6.
Biochem Genet ; 2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1718783

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is an enveloped single-stranded RNA virus that can lead to respiratory symptoms and damage many organs such as heart, kidney, intestine, brain and liver. It has not been clearly documented whether myocardial injury is caused by direct infection of cardiomyocytes, lung injury, or other unknown mechanisms. The gene expression profile of GSE150392 was obtained from the Gene Expression Omnibus (GEO) database. The processing of high-throughput sequencing data and the screening of differentially expressed genes (DEGs) were implemented by R software. The R software was employed to analyze the Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The protein-protein interaction (PPI) network of the DEGs was constructed by the STRING website. The Cytoscape software was applied for the visualization of PPI network and the identification of hub genes. The statistical analysis was performed by the GraphPad Prism software to verify the hub genes. A total of 516 up-regulated genes and 191 down-regulated genes were screened out. The top 1 enrichment items of GO in biological process (BP), Cellular Component (CC), and Molecular Function (MF) were type I interferon signaling pathway, sarcomere, and receptor ligand activity, respectively. The top 10 enrichment pathways, including TNF signaling pathway, were identified by KEGG enrichment analysis. A PPI network was established, consisting of 613 nodes and 3,993 edges. The 12 hub genes were confirmed as statistically significant, which was verified by GSE151879 dataset. In conclusion, the hub genes of human iPSC-cardiomyocytes infected with SARS-CoV-2 were identified through bioinformatics analysis, which may be used as biomarkers for further research.

7.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-325005

ABSTRACT

Background: At present, the epidemic of the novel coronavirus disease 2019 (COVID-19) has quickly engulfed the world. Inflammatory cytokines are associated with the severity and outcomes of patients with COVID-19. However, the effects of pro-inflammatory factors in cancer patients with COVID-19 are unknown. Methods: A multi-center, retrospective, cross-sectional study, based on 5 designated tertiary hospitals for the treatment of COVID-19 in Hubei Province, China. 112 cancer patients with COVID-19, and 105 COVID-19 patients without cancer were enrolled in the study between January 1 st , 2020 and April 30 th , 2020. The risk assessment of pro-inflammatory factors for disease severity and clinical adverse outcomes was identified by univariable and multivariable logistic regression models. Results: Of the 112 cancer patients with COVID-19, 40 (35.7%) patients were in critical condition and 18 (16.1%) patients died unfortunately. Univariate and multivariate analysis demonstrated that hemoglobin count and pro-inflammatory neutrophil and C-reactive protein, can be used as independent factors affecting the severity of COVID-19;Meanwhile, pro-inflammatory neutrophils and C-reactive protein can be used as an independent influencing factor for adverse clinical outcome. Moreover, the dynamic changes of neutrophils and C-reactive protein were also presented, and compared with COVID-19 patients without cancer, cancer patients with COVID-19 showed higher neutrophil counts and C-reactive protein levels. Conclusions: In cancer patients with COVID-19, the significant increase in pro-inflammatory neutrophil and C-reactive protein indicated a more critical illness and adverse clinical outcome, and pro-inflammatory neutrophils and C-reactive protein played a more adverse effect compare with COVID-19 patients without cancer, which may be the cause of critical illness and adverse clinical outcomes of cancer patients with COVID-19.

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-324533

ABSTRACT

SARS-CoV-2 infection causes complicated clinic manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various tissues/organs examined, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Neuronal receptor NRP1 expression showed a significant induction by SARS-CoV-2 in cerebral cortex, which might be responsible for a higher infectivity and consequent inflammatory response. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.

9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-323719

ABSTRACT

The SARS-CoV-2 has led to a worldwide health crisis. The ACE2 has been identified as the entry receptor in a species-specific manner. Classic laboratory mice were insusceptible since the virus cannot use murine ACE2 orthologue. Animal models rely on gene modification on the virus or the host. However, these mice were restricted in limited genetic backgrounds and did not support natural infection. Here we showed two wild-type inbred lines (CAST and FEW) from Genetic Diversity mice supported authentic SARS-CoV-2 infection, and developed mild to moderate interstitial pneumonia, along with infiltrating inflammatory cells. Particularly, FEW featured age-dependent damages, while CAST charactered by pulmonary fibrosis. Genome and transcriptome comparative analysis suggested the mutated ACE2 was not responsible for SARS-CoV-2 infection in CAST and FEW, and the differential gene expressions in immune response and immune cell may be risk factors for the infection. In summary, the GD mice, derived from the multi-parental panel, provided promising murine models for exploring sophisticated pathogenesis in SARS-CoV-2.

10.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315651

ABSTRACT

Coronavirus Disease 2019 (COVID-19)–infected pneumonia (CDIP) occurred in Wuhan, China, in December 2019, from where the disease has spread all over the world. Although the morbidity and mortality in China have been effectively controlled, the number of cases has increased rapidly in countries other than China. Here we report the epidemiological and clinical characteristics of 7 CDIP patients. We found that similar with the throat swabs, sputum induction still has a false negative rate. In addition, CD4+ count rise occurred before the disease remission, and decreased CD4+ count may be the cause of virus recurrence. These imply that CD4+ count could be a marker for recover and reinfection. Notably, we tentatively speculate that CD4+ plays a key role in the body's resistance to the COVID-19 attack on lung tissue.

11.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311706

ABSTRACT

The SARS-CoV-2 pandemic poses an unprecedented public health crisis. Accumulating evidences suggest that SARS-CoV-2 infection causes dysregulation of immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced by SARS-CoV-2 in animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could reduce inflammatory response and rescue the pneumonia with substantial reduction of viral titers in SASR-CoV-2 infected animals. Remarkably, Paquinimod treatment resulted in 100% survival of mice in a lethal model of mouse coronavirus (MHV) infection. A novel group of neutrophils that contributed to the uncontrolled inflammation and onset of COVID-19 were dramatically induced by coronavirus infections. Paquinimod treatment could reduce these neutrophils and regain antiviral responses, unveiling key roles of S100A8/A9 and noncanonical neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention.Funding: This work was supported by the National Natural Science Foundation of China (31570891;31872736), the National Key Research and Development Program of China (2016YFA0500302;2020YFA0707800), the National Key Research and Development Program (2020YFA0707500) and the Strategic Priority Research Program (XDB29010000). Xiangxi Wang was supported by Ten Thousand Talent Program and the NSFS Innovative Research Group (81921005). We thank National Mega projects of China for Major Infectious Diseases (2017ZX10304402), CAMS initiative for Innovative Medicine of China (2016-12M-2-006) and The National Natural Science Foundation of China (82041008) for the support on the animal model study. Conflict of Interest: The authors have no conflicts of interest to declare.Ethical Approval: All experiments with live SARS-CoV-2 viruses were carried out in the enhanced biosafety level 3 (P3+) facilities in the Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) approved by the National Health Commission of the People’s Republic of China. All animals care and use were in accordance with the Guide for the Care and Use of Laboratory Animals of the Chinese Association for Laboratory Animal Science. All procedures of animal handling were approved by the Animal Care Committee of Peking University Health Science Center.

12.
Vet Pathol ; : 3009858211071016, 2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1662392

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes severe viral pneumonia and is associated with a high fatality rate. A substantial proportion of patients infected by SARS-CoV-2 suffer from mild hyposmia to complete loss of olfactory function, resulting in anosmia. However, the pathogenesis of the olfactory dysfunction and comparative pathology of upper respiratory infections with SARS-CoV-2 are unknown. We describe the histopathological, immunohistochemical, and in situ hybridization findings from rodent models of SARS-CoV-2 infection. The main histopathological findings in the olfactory epithelia of K8-hACE2 Tg mice, hACE2 Tg mice, and hamsters were varying degrees of inflammatory lesions, including disordered arrangement, necrosis, exfoliation, and macrophage infiltration of the olfactory epithelia, and inflammatory exudation. On the basis of these observations, the nasal epithelia of these rodent models appeared to develop moderate, mild, and severe rhinitis, respectively. Correspondingly, SARS-CoV-2 viral RNA and antigen were mainly identified in the olfactory epithelia and lamina propria. Moreover, viral RNA was abundant in the cerebrum of K18-hACE2 Tg mice, including the olfactory bulb. The K8-hACE2 Tg mouse, hACE2 Tg mouse, and hamster models could be used to investigate the pathology of SARS-CoV-2 infection in the upper respiratory tract and central nervous system. These models could help to provide a better understanding of the pathogenic process of this virus and to develop effective medications and prophylactic treatments.

13.
Signal Transduct Target Ther ; 7(1): 29, 2022 01 28.
Article in English | MEDLINE | ID: covidwho-1655546

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted on mink farms between minks and humans in many countries. However, the systemic pathological features of SARS-CoV-2-infected minks are mostly unknown. Here, we demonstrated that minks were largely permissive to SARS-CoV-2, characterized by severe and diffuse alveolar damage, and lasted at least 14 days post inoculation (dpi). We first reported that infected minks displayed multiple organ-system lesions accompanied by an increased inflammatory response and widespread viral distribution in the cardiovascular, hepatobiliary, urinary, endocrine, digestive, and immune systems. The viral protein partially co-localized with activated Mac-2+ macrophages throughout the body. Moreover, we first found that the alterations in lipids and metabolites were correlated with the histological lesions in infected minks, especially at 6 dpi, and were similar to that of patients with severe and fatal COVID-19. Particularly, altered metabolic pathways, abnormal digestion, and absorption of vitamins, lipids, cholesterol, steroids, amino acids, and proteins, consistent with hepatic dysfunction, highlight metabolic and immune dysregulation. Enriched kynurenine in infected minks contributed to significant activation of the kynurenine pathway and was related to macrophage activation. Melatonin, which has significant anti-inflammatory and immunomodulating effects, was significantly downregulated at 6 dpi and displayed potential as a targeted medicine. Our data first illustrate systematic analyses of infected minks to recapitulate those observations in severe and fetal COVID-19 patients, delineating a useful animal model to mimic SARS-CoV-2-induced systematic and severe pathophysiological features and provide a reliable tool for the development of effective and targeted treatment strategies, vaccine research, and potential biomarkers.


Subject(s)
COVID-19/metabolism , Lung/metabolism , Macrophages, Alveolar/metabolism , Metabolome , Mink/virology , SARS-CoV-2/metabolism , Amino Acids/metabolism , Animals , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/genetics , COVID-19/pathology , Disease Models, Animal , Female , Humans , Lung/pathology , Lung/virology , Macrophages, Alveolar/pathology , Macrophages, Alveolar/virology , Melatonin/metabolism , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy/methods , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Sterols/metabolism , Virulence , Virus Replication/genetics
14.
Adv Sci (Weinh) ; 9(3): e2102189, 2022 01.
Article in English | MEDLINE | ID: covidwho-1649842

ABSTRACT

Sustainable solutions on fabricating and using a face mask to block the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread during this coronavirus pandemic of 2019 (COVID-19) are required as society is directed by the World Health Organization (WHO) toward wearing it, resulting in an increasingly huge demand with over 4 000 000 000 masks used per day globally. Herein, various new mask technologies and advanced materials are reviewed to deal with critical shortages, cross-infection, and secondary transmission risk of masks. A number of countries have used cloth masks and 3D-printed masks as substitutes, whose filtration efficiencies can be improved by using nanofibers or mixing other polymers into them. Since 2020, researchers continue to improve the performance of masks by adding various functionalities, for example using metal nanoparticles and herbal extracts to inactivate pathogens, using graphene to make masks photothermal and superhydrophobic, and using triboelectric nanogenerator (TENG) to prolong mask lifetime. The recent advances in material technology have led to the development of antimicrobial coatings, which are introduced in this review. When incorporated into masks, these advanced materials and technologies can aid in the prevention of secondary transmission of the virus.


Subject(s)
COVID-19/prevention & control , Masks , Pandemics , SARS-CoV-2 , COVID-19/epidemiology , Humans
15.
Cell Res ; 32(3): 269-287, 2022 03.
Article in English | MEDLINE | ID: covidwho-1634806

ABSTRACT

The emergence of SARS-CoV-2 variants and potentially other highly pathogenic sarbecoviruses in the future highlights the need for pan-sarbecovirus vaccines. Here, we discovered a new STING agonist, CF501, and found that CF501-adjuvanted RBD-Fc vaccine (CF501/RBD-Fc) elicited significantly stronger neutralizing antibody (nAb) and T cell responses than Alum- and cGAMP-adjuvanted RBD-Fc in mice. Vaccination of rabbits and rhesus macaques (nonhuman primates, NHPs) with CF501/RBD-Fc elicited exceptionally potent nAb responses against SARS-CoV-2 and its nine variants and 41 S-mutants, SARS-CoV and bat SARSr-CoVs. CF501/RBD-Fc-immunized hACE2-transgenic mice were almost completely protected against SARS-CoV-2 challenge, even 6 months after the initial immunization. NHPs immunized with a single dose of CF501/RBD-Fc produced high titers of nAbs. The immunized macaques also exhibited durable humoral and cellular immune responses and showed remarkably reduced viral load in the upper and lower airways upon SARS-CoV-2 challenge even at 108 days post the final immunization. Thus, CF501/RBD-Fc can be further developed as a novel pan-sarbecovirus vaccine to combat current and future outbreaks of sarbecovirus diseases.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Macaca mulatta , Mice , Rabbits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes
16.
Cell Mol Immunol ; 19(2): 210-221, 2022 02.
Article in English | MEDLINE | ID: covidwho-1608557

ABSTRACT

Exploring the cross-talk between the immune system and advanced biomaterials to treat SARS-CoV-2 infection is a promising strategy. Here, we show that ACE2-overexpressing A549 cell-derived microparticles (AO-MPs) are a potential therapeutic agent against SARS-CoV-2 infection. Intranasally administered AO-MPs dexterously navigate the anatomical and biological features of the lungs to enter the alveoli and are taken up by alveolar macrophages (AMs). Then, AO-MPs increase the endosomal pH but decrease the lysosomal pH in AMs, thus escorting bound SARS-CoV-2 from phago-endosomes to lysosomes for degradation. This pH regulation is attributable to oxidized cholesterol, which is enriched in AO-MPs and translocated to endosomal membranes, thus interfering with proton pumps and impairing endosomal acidification. In addition to promoting viral degradation, AO-MPs also inhibit the proinflammatory phenotype of AMs, leading to increased treatment efficacy in a SARS-CoV-2-infected mouse model without side effects. These findings highlight the potential use of AO-MPs to treat SARS-CoV-2-infected patients and showcase the feasibility of MP therapies for combatting emerging respiratory viruses in the future.


Subject(s)
Angiotensin-Converting Enzyme 2/administration & dosage , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/therapy , Cell- and Tissue-Based Therapy/methods , Cell-Derived Microparticles/metabolism , Cholesterol/metabolism , Endosomes/chemistry , Macrophages, Alveolar/metabolism , SARS-CoV-2/metabolism , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/virology , Chlorocebus aethiops , Disease Models, Animal , Female , Humans , Hydrogen-Ion Concentration , Lysosomes/chemistry , Mice , Mice, Inbred ICR , Mice, Transgenic , Oxidation-Reduction , RAW 264.7 Cells , Treatment Outcome , Vero Cells
17.
J Cardiovasc Transl Res ; 15(1): 38-48, 2022 02.
Article in English | MEDLINE | ID: covidwho-1594479

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is required for the cellular entry of the severe acute respiratory syndrome coronavirus 2. ACE2, via the Ang-(1-7)-Mas-R axis, is part of the antihypertensive and cardioprotective effects of the renin-angiotensin system. We studied hospitalized COVID-19 patients with hypertension and hypertensive human(h) ACE2 transgenic mice to determine the outcome of COVID-19 with or without AT1 receptor (AT1R) blocker treatment. The severity of the illness and the levels of serum cardiac biomarkers (CK, CK-BM, cTnI), as well as the inflammation markers (IL-1, IL-6, CRP), were lesser in hypertensive COVID-19 patients treated with AT1R blockers than those treated with other antihypertensive drugs. Hypertensive hACE2 transgenic mice, pretreated with AT1R blocker, had increased ACE2 expression and SARS-CoV-2 in the kidney and heart, 1 day post-infection. We conclude that those hypertensive patients treated with AT1R blocker may be at higher risk for SARS-CoV-2 infection. However, AT1R blockers had no effect on the severity of the illness but instead may have protected COVID-19 patients from heart injury, via the ACE2-angiotensin1-7-Mas receptor axis.


Subject(s)
COVID-19 , Hypertension , Animals , Humans , Hypertension/complications , Hypertension/drug therapy , Inpatients , Mice , Mice, Transgenic , Renin-Angiotensin System , SARS-CoV-2 , Virulence
19.
Signal Transduct Target Ther ; 6(1): 337, 2021 09 06.
Article in English | MEDLINE | ID: covidwho-1402050

ABSTRACT

SARS-CoV-2 has been reported to show a capacity for invading the brains of humans and model animals. However, it remains unclear whether and how SARS-CoV-2 crosses the blood-brain barrier (BBB). Herein, SARS-CoV-2 RNA was occasionally detected in the vascular wall and perivascular space, as well as in brain microvascular endothelial cells (BMECs) in the infected K18-hACE2 transgenic mice. Moreover, the permeability of the infected vessel was increased. Furthermore, disintegrity of BBB was discovered in the infected hamsters by administration of Evans blue. Interestingly, the expression of claudin5, ZO-1, occludin and the ultrastructure of tight junctions (TJs) showed unchanged, whereas, the basement membrane was disrupted in the infected animals. Using an in vitro BBB model that comprises primary BMECs with astrocytes, SARS-CoV-2 was found to infect and cross through the BMECs. Consistent with in vivo experiments, the expression of MMP9 was increased and collagen IV was decreased while the markers for TJs were not altered in the SARS-CoV-2-infected BMECs. Besides, inflammatory responses including vasculitis, glial activation, and upregulated inflammatory factors occurred after SARS-CoV-2 infection. Overall, our results provide evidence supporting that SARS-CoV-2 can cross the BBB in a transcellular pathway accompanied with basement membrane disrupted without obvious alteration of TJs.


Subject(s)
Basement Membrane/metabolism , Blood-Brain Barrier/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Tight Junctions/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Basement Membrane/pathology , Basement Membrane/virology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/virology , COVID-19/genetics , COVID-19/pathology , Chlorocebus aethiops , Disease Models, Animal , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , SARS-CoV-2/genetics , Tight Junctions/genetics , Tight Junctions/pathology , Tight Junctions/virology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL