Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Clin Infect Dis ; 2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1806309

ABSTRACT

BACKGROUND: Favipiravir is an oral, RNA-dependent RNA polymerase inhibitor with in vitro activity against SARS-CoV2. Despite limited data, favipiravir is administered to patients with COVID-19 in several countries. METHODS: We conducted a phase 2 double-blind randomized controlled outpatient trial of favipiravir in asymptomatic or mildly symptomatic adults with a positive SARS-CoV2 RT-PCR within 72 hours of enrollment. Participants were randomized 1: 1 to receive placebo or favipiravir (1800mg BID Day 1, 800 mg BID Days 2-10). The primary outcome was SARS-CoV-2 shedding cessation in a modified intention-to-treat (mITT) cohort of participants with positive enrollment RT-PCRs. Using SARS-CoV-2 amplicon-based sequencing, we assessed favipiravir's impact on mutagenesis. RESULTS: From July 8, 2020 - March 23, 2021, we randomized 149 participants with 116 included in the mITT cohort. The participants' mean age was 43 years (SD 12.5) and 57 (49%) were women. We found no difference in time to shedding cessation by treatment arm overall (HR 0.76 favoring placebo, 95% confidence interval [CI] 0.48-1.20) or in sub-group analyses (age, sex, high-risk comorbidities, seropositivity or symptom duration at enrollment). We observed no difference in time to symptom resolution (initial: HR 0.84, 95% CI 0.54-1.29; sustained: HR 0.87, 95% CI 0.52-1.45). We detected no difference in accumulation of transition mutations in the viral genome during treatment. CONCLUSIONS: Our data do not support favipiravir use at commonly used doses in outpatients with uncomplicated COVID-19. Further research is needed to ascertain if higher doses of favipiravir are effective and safe for patients with COVID-19.

2.
Clin Infect Dis ; 2022 Mar 12.
Article in English | MEDLINE | ID: covidwho-1740830

ABSTRACT

BACKGROUND: Preventing SARS-CoV2 infections in healthcare workers (HCWs) is critical for healthcare delivery. We aimed to estimate and characterize the prevalence and incidence of COVID-19 in a US HCW cohort and to identify risk factors associated with infection. METHODS: We conducted a longitudinal cohort study of HCWs at 3 Bay Area medical centers using serial surveys and SARS-CoV-2 viral and orthogonal serological testing, including measurement of neutralizing antibodies. We estimated baseline prevalence and cumulative incidence of COVID-19. We performed multivariable Cox proportional hazards models to estimate associations of baseline factors with incident infections and evaluated the impact of time-varying exposures on time to COVID-19 using marginal structural models. RESULTS: 2435 HCWs contributed 768 person years of follow-up time. We identified 21/2435 individuals with prevalent infection, resulting in a baseline prevalence of 0.86% (95% CI, 0.53% to 1.32%). We identified 70/2414 (2.9%) incident infections yielding a cumulative incidence rate of 9.11 cases per 100 person years (95% CI 7.11 to 11.52). Community contact with a known COVID-19 case most strongly correlated with increased hazard for infection (HR 8.1, 95% CI, 3.8, 17.5). High-risk work-related exposures (i.e., breach in protective measures) drove an association between work exposure and infection (HR 2.5, 95% CI, 1.3-4.8). More cases were identified in HCW when community case rates were high. CONCLUSION: We observed modest COVID-19 incidence despite consistent exposure at work. Community contact was strongly associated with infections but contact at work was not unless accompanied by high-risk exposure.

3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313371

ABSTRACT

Background: Prolonged symptoms after SARS-CoV-2 infection are well-documented. However, which factors influence development of long-term symptoms, how symptoms vary across ethnic groups, and whether long-term symptoms correlate with serologic biomarkers remain elusive. Methods: Adult inpatient and outpatient SARS-CoV-2 RT-PCR positive patients were recruited at Stanford from March 2020 to February 2021. Study participants were seen for in-person visits at diagnosis and every 1-3 months for up to one year after diagnosis;they completed symptom surveys and underwent sampling procedures (blood draw and nasal swab) at each visit. Findings: Our cohort (n=617) ranged from asymptomatic to critical COVID-19 infections. 40% of participants reported at least one symptom associated with COVID-19 six months after diagnosis. Median time from diagnosis to first resolution of all symptoms was 44 days, median time from diagnosis to sustained symptom resolution with no recurring symptoms for one month or longer was 214 days. Serum anti-nucleocapsid IgG level in the first week of infection was predictive of time to symptom resolution. A prior diagnosis of lung disease was associated with longer time to symptom resolution. COVID-19 disease severity, ethnicity, sex, cytomegalovirus (CMV) seropositivity, and remdesivir use did not affect time to sustained symptom resolution. More than 90% of participants had SARS-CoV-2-specific antibody>1000 AU/mL nine months after diagnosis. Interpretation: Our findings showed that all disease severities had a similar risk of developing post-COVID-19 syndrome in an ethnically diverse population. Comorbid lung disease and lower levels of initial IgG response to SARS-CoV-2 nucleocapsid antigen were associated with longer symptom duration. Trial Registration: National clinical trial database NCT04664309.Funding: NIH CTSA grant, U54 NIH Grant, R21 NIEHS, Sean N Parker Center for Allergy and Asthma Research at Stanford University, the Sunshine Foundation, the Crown Foundation, and the Parker Foundation.Declaration of Interest: Dr. Boyd received support for the current manuscript from Meso Scale Discovery and NIH;418 received consulting fees by Regeneron for expert testimony, has stocks or stock options in 419 AbCellera Biologics;Dr. Chinthrajah reports grants from NIAID, CoFAR, Aimmune, DBV 420 Technologies, Astellas, Regeneron, Stanford Maternal and Child Health Research Institute 421 (MCHRI), and FARE. She is an Advisory Board Member at Alladapt Therapeutics, Novartis, 422 Genentech, Sanofi, Allergenis, and Nutricia;Dr. Manisha Desai received support from Chan 423 Zuckerberg Foundation;Dr. Maecker received grants or contracts from NIH, Bill & Melinda 424 Gates Foundation, Ionis Corporation, Amgen Corporation;Consulting fees from Magarray Corp;425 payment or honoraria from UCLA, UC Davis;leadership or fiduciary role at Cytek SAB;stocks 426 or stock options at BD Biosciences;Dr. Nadeau reports grants from National Institute of Allergy and Infectious Diseases (NIAID), National Heart, Lung, and Blood Institute (NHLBI), National Institute of Environmental Health Sciences (NIEHS), and Food Allergy Research & Education (FARE);Director of World Allergy Organization (WAO) , Advisor at Cour Pharma, Consultant for Excellergy, Red tree ventures, and Phylaxis, Co-founder of Before Brands, Alladapt, Latitude, and IgGenix;and National Scientific Committee member at Immune Tolerance Network (ITN), and National Institutes of Health (NIH) clinical research centers, outside the submitted work;patents include, “Mixed allergen composition and methods for using the same”, “Granulocyte-based methods for detecting and monitoring immune system disorders”, “Methods and Assays for Detecting and Quantifying Pure Subpopulations of White Blood Cells in Immune System Disorders,” and “Methods of isolating allergen-specific antibodies from humans and uses thereof”;Dr. Benjamin Pinsky received grants or contracts for the present manuscript from MesoScale Diagno tics;Dr. Angele Rogers was a Clinical Trials Advisory Board Member for Merck;Dr. Sindher reports support for the present manuscript from the NIH, Regeneron, DBV Technologies, Aimmune, Novartis, CoFAR, FARE, participated on a DSMB for Astra Zeneca, DBV, and received payment or honorarium from FARE;Neera Ahuja, Maja Artandi, Linda Barman, Catherine Blish, Andra Blomkalns, William Collins, MacKenzie Cox, Linda Geng, Xiaolin Jia, Megan Mahoney, Monali Manohar, Ruth O’hara, Rajan Puri, Katharina Roltgen, Laura Vaughan, Samuel Yang, Shu Cao, Iris Chang, Hena Din, Evan Do, Andrea Fernandez, Alexandra Lee, Natasha Purington, Yael Rosenberg-Hasson, Theo Snow, Daniel Solis, Michelle Verghese, and Yingjie Weng have no conflict of interest.Ethical Approval: This study was reviewed and approved by the Stanford Administrative Panel on Human Subjects in Medical Research.

4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-309904

ABSTRACT

Background: It is unclear if asthma and its allergic phenotype are risk factors for hospitalization or severe disease from SARS-CoV-2.Methods: All patients testing positive for SARS-CoV-2 between March 1 and September 30, 2020, were retrospectively identified and characterized through electronic analysis at Stanford. A sub-cohort was followed prospectively to evaluate long-term COVID-19 symptoms.Findings: 168,190 patients underwent SARS-CoV-2 testing, and 6,976 (4·15%) tested positive. In a multivariate analysis, asthma was not an independent risk factor for hospitalization (OR 1·12 [95% CI 0·86, 1·45], p=0·40). Among SARS-CoV-2 positive asthmatics, allergic asthma lowered the risk of hospitalization and had a protective effect compared to non-allergic asthma (OR 0·52 (0·28, 0·91), p=0·026);there was no association between baseline medication use as characterized by GINA and hospitalization risk. Patients with severe COVID-19 disease had lower eosinophil levels during hospitalization compared to patients with mild or asymptomatic disease, independent of asthma status (p=0.0014). In a patient sub-cohort followed longitudinally, asthmatics and non-asthmatics had similar time to resolution of COVID-19 symptoms, particularly lower respiratory symptoms.Interpretation: Asthma is not a risk factor for more severe COVID-19 disease. Allergic asthmatics were half as likely to be hospitalized with COVID-19 compared to non-allergic asthmatics. Lower levels of eosinophil counts (allergic biomarkers) were associated with more severe COVID-19 disease trajectory. Recovery was similar among asthmatics and non-asthmatics with over 50% of patients reporting ongoing lower respiratory symptoms three months post-infection.Trial Registration Information: Sub-cohort analysis performed among those enrolled in a prospective, longitudinal study (NCT# 04373148),Funding Statement: The Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Sunshine Foundation, Crown Foundation, Parker Foundation.Declaration of Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.Ethics Approval Statement: This study was reviewed and approved with a waiver of consent by the Stanford Administrative Panel on Human Subjects in Medical Research.

5.
Vaccines (Basel) ; 9(12)2021 Nov 29.
Article in English | MEDLINE | ID: covidwho-1542830

ABSTRACT

OBJECTIVE: The study was designed to compare intentions to receive COVID-19 vaccination by race-ethnicity, to identify beliefs that may mediate the association between race-ethnicity and intention to receive the vaccine and to identify the demographic factors and beliefs most strongly predictive of intention to receive a vaccine. DESIGN: Cross-sectional survey conducted from November 2020 to January 2021, nested within a longitudinal cohort study of the prevalence and incidence of SARS-CoV-2 among a general population-based sample of adults in six San Francisco Bay Area counties (called TrackCOVID). Study Cohort: In total, 3161 participants among the 3935 in the TrackCOVID parent cohort responded. RESULTS: Rates of high vaccine willingness were significantly lower among Black (41%), Latinx (55%), Asian (58%), Multi-racial (59%), and Other race (58%) respondents than among White respondents (72%). Black, Latinx, and Asian respondents were significantly more likely than White respondents to endorse lack of trust of government and health agencies as a reason not to get vaccinated. Participants' motivations and concerns about COVID-19 vaccination only partially explained racial-ethnic differences in vaccination willingness. Concerns about a rushed government vaccine approval process and potential bad reactions to the vaccine were the two most important factors predicting vaccination intention. CONCLUSIONS: Vaccine outreach campaigns must ensure that the disproportionate toll of COVID-19 on historically marginalized racial-ethnic communities is not compounded by inequities in vaccination. Efforts must emphasize messages that speak to the motivations and concerns of groups suffering most from health inequities to earn their trust to support informed decision making.

6.
Diagn Microbiol Infect Dis ; 102(3): 115612, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1536510

ABSTRACT

Although the vast majority of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections are uncomplicated, our understanding of predictors of symptom resolution and viral shedding cessation remains limited. We characterized symptom trajectories and oropharyngeal viral shedding among 120 outpatients with uncomplicated Coronavirus Disease of 2019 (COVID-19) enrolled in a clinical trial of Peginterferon Lambda, which demonstrated no clinical or virologic benefit compared with placebo. In the combined trial cohort, objective fever was uncommon, inflammatory symptoms (myalgias, fatigue) peaked at 4 to 5 days postsymptom onset, and cough peaked at 9 days. The median time to symptom resolution from earliest symptom onset was 17 days (95% confidence interval 14-18). SARS-CoV-2 IgG seropositivity at enrollment was associated with hastened resolution of viral shedding (hazard ratio 1.80, 95% confidence interval 1.05-3.1, P = 0.03), but not with symptom resolution. Inflammatory symptoms were associated with a significantly greater odds of oropharyngeal SARS-CoV-2 RNA detection; respiratory symptoms were not. These findings have important implications for COVID-19 screening approaches and trial design.


Subject(s)
COVID-19 , Humans , Outpatients , RNA, Viral , SARS-CoV-2 , Virus Shedding
7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292965

ABSTRACT

Background: Favipiravir is an oral, RNA–dependent RNA polymerase inhibitor with in vitro activity against SARS–CoV2. Despite limited data, favipiravir is administered to patients with COVID-19 in several countries. Methods: We conducted a phase 2 double–blind randomized controlled outpatient trial of favipiravir in asymptomatic or mildly symptomatic adults with a positive SARS–CoV2 RT–PCR within 72 hours of enrollment. Participants were randomized 1:1 to receive placebo or favipiravir (1800 mg BID Day 1, 800mg BID Days 2–10). The primary outcome was SARS–CoV2 shedding cessation in a modified intention-to-treat (mITT) cohort of participants with positive enrollment RT–PCRs. Using SARS–CoV2 deep sequencing, we assessed the impact of favipiravir on mutagenesis. Results: From July 8, 2020 to March 23, 2021, we randomized 149 participants with 116 included in the mITT cohort. The mean age was 43 years (SD 12.5) and 57 (49%) were women. We found no difference in time to shedding cessation by treatment arm overall (HR 0.76 favoring placebo, 95% confidence interval [CI] 0.48 – 1.20) or in sub-group analyses (age, sex, high-risk comorbidities, seropositivity or symptom duration at enrollment). We observed no difference in time to symptom resolution (initial: HR 0.84, 95% CI 0.54 – 1.29;sustained: HR 0.87, 95% CI 0.52 – 1.45). We detected no difference in accumulation of transition mutations in the viral genome during treatment. Conclusions: Our data do not support favipiravir use at commonly used doses in outpatients with uncomplicated COVID-19. Further research is needed to ascertain if higher doses of favipiravir are effective and safe for patients with COVID-19.

8.
Ann Epidemiol ; 67: 81-100, 2022 03.
Article in English | MEDLINE | ID: covidwho-1517026

ABSTRACT

PURPOSE: We describe the design of a longitudinal cohort study to determine SARS-CoV-2 incidence and prevalence among a population-based sample of adults living in six San Francisco Bay Area counties. METHODS: Using an address-based sample, we stratified households by county and by census-tract risk. Risk strata were determined by using regression models to predict infections by geographic area using census-level sociodemographic and health characteristics. We disproportionately sampled high and medium risk strata, which had smaller population sizes, to improve precision of estimates, and calculated a desired sample size of 3400. Participants were primarily recruited by mail and were followed monthly with PCR testing of nasopharyngeal swabs, testing of venous blood samples for antibodies to SARS-CoV-2 spike and nucleocapsid antigens, and testing of the presence of neutralizing antibodies, with completion of questionnaires about socio-demographics and behavior. Estimates of incidence and prevalence will be weighted by county, risk strata and sociodemographic characteristics of non-responders, and will take into account laboratory test performance. RESULTS: We enrolled 3842 adults from August to December 2020, and completed follow-up March 31, 2021. We reached target sample sizes within most strata. CONCLUSIONS: Our stratified random sampling design will allow us to recruit a robust general population cohort of adults to determine the incidence of SARS-CoV-2 infection. Identifying risk strata was unique to the design and will help ensure precise estimates, and high-performance testing for presence of virus and antibodies will enable accurate ascertainment of infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , COVID-19/epidemiology , Cohort Studies , Humans , Incidence , Longitudinal Studies , Prevalence , San Francisco/epidemiology
10.
Diabetes ; 70, 2021.
Article in English | ProQuest Central | ID: covidwho-1362281

ABSTRACT

Due to the SARS CoV-2 pandemic, fewer in-person clinic visits have resulted in fewer point-of-care (POC) A1c measurements in youth with T1D. Therefore, there is an increased need to use alternate methods to assess A1c, including continuous glucose monitoring-derived Glucose Management Indicator (GMI) and home kit A1c. The University of Minnesota's home kit A1c (n=59), GMI (n=56), and POC A1c (n=16) were collected from youth with T1D (age 10.0 [5.3, 13.0] years, 42% female, and baseline A1c 12.4 ± 2.2%). Matched pairs were used for Bland Altman analyses and Lin's concordance correlation coefficient (pc) to evaluate the agreement between A1c measures. GMI data (up to 90 days) was captured using Dexcom Clarity. In relation to POC A1c, both home kit A1c (panel A) and GMI (panel B) showed a slight positive bias (mean difference 0.13 and 0.22%, respectively). Home kit A1c and GMI showed strong concordance to POC A1c (pc = 0.987 [0.963, 0.995] and 0.930 [0.835, 0.971], respectively). GMI (panel C) also showed a slight positive bias (mean difference 0.26%) and good concordance (pc = 0.803 [0.703, 0.871]) to home kit A1c. These data demonstrate that home kit A1c and GMI show strong concordance with POC A1c. Overall, home kit A1c and GMI may be potential solutions to glycemic assessment for telehealth visits, including during the SARS CoV-2 pandemic.

11.
Contemp Clin Trials ; 108: 106509, 2021 09.
Article in English | MEDLINE | ID: covidwho-1312964

ABSTRACT

More than 3000 clinical trials related to COVID-19 have been registered through clinicaltrials.gov. With so many trials, there is a risk that many will be inconclusive due to being underpowered or due to an inability to recruit patients. At academic medical centers, multiple trials are competing for the same resources; the success of one may come at the expense of another. The COVID-19 Outpatient Pragmatic Protocol Study (COPPS) is a flexible phase 2, multi-site, randomized, blinded trial based at Stanford University designed to overcome these issues by simultaneously evaluating multiple COVID-19 treatments in the outpatient setting in one common platform with shared controls. This approach reduces the overall number of patients required for statistical power, while improving the likelihood that any enrolled patient receives active treatment. The platform study has two main domains designed to evaluate COVID-19 treatments by assessing their ability to reduce viral shedding (Viral Domain), measured with self-collected nasal swabs, or improve clinical outcomes (Clinical Domain), measured through self-reported symptomology data. Data are collected on both domains for all participants enrolled. Participants are followed over a 28-day period. COPPS has the advantage of pragmatism created around its workflow that is also appealing to potential participants because of a lower probability of inactive treatment. At the conclusion of this clinical trial we expect to have identified potentially effective therapeutic strategy/ies for treating COVID-19 in the outpatient setting, which will have a transformative impact on medicine and public health.


Subject(s)
COVID-19 , Humans , Outpatients , Research Design , SARS-CoV-2 , Treatment Outcome
12.
Allergy ; 77(1): 173-185, 2022 01.
Article in English | MEDLINE | ID: covidwho-1255322

ABSTRACT

BACKGROUND: It is unclear whether asthma and its allergic phenotype are risk factors for hospitalization or severe disease from SARS-CoV-2. METHODS: All patients over 28 days old testing positive for SARS-CoV-2 between March 1 and September 30, 2020, were retrospectively identified and characterized through electronic analysis at Stanford. A sub-cohort was followed prospectively to evaluate long-term COVID-19 symptoms. RESULTS: 168,190 patients underwent SARS-CoV-2 testing, and 6,976 (4.15%) tested positive. In a multivariate analysis, asthma was not an independent risk factor for hospitalization (OR 1.12 [95% CI 0.86, 1.45], p = .40). Among SARS-CoV-2-positive asthmatics, allergic asthma lowered the risk of hospitalization and had a protective effect compared with non-allergic asthma (OR 0.52 [0.28, 0.91], p = .026); there was no association between baseline medication use as characterized by GINA and hospitalization risk. Patients with severe COVID-19 disease had lower eosinophil levels during hospitalization compared with patients with mild or asymptomatic disease, independent of asthma status (p = .0014). In a patient sub-cohort followed longitudinally, asthmatics and non-asthmatics had similar time to resolution of COVID-19 symptoms, particularly lower respiratory symptoms. CONCLUSIONS: Asthma is not a risk factor for more severe COVID-19 disease. Allergic asthmatics were half as likely to be hospitalized with COVID-19 compared with non-allergic asthmatics. Lower levels of eosinophil counts (allergic biomarkers) were associated with a more severe COVID-19 disease trajectory. Recovery was similar among asthmatics and non-asthmatics with over 50% of patients reporting ongoing lower respiratory symptoms 3 months post-infection.


Subject(s)
Asthma , COVID-19 , Asthma/diagnosis , Asthma/epidemiology , COVID-19 Testing , Humans , Phenotype , Retrospective Studies , SARS-CoV-2
13.
Ann Am Thorac Soc ; 18(4): 698-708, 2021 04.
Article in English | MEDLINE | ID: covidwho-1186616

ABSTRACT

Patients hospitalized for pneumonia are at high risk for mortality. Effective therapies are therefore needed. Recent randomized clinical trials suggest that systemic steroids can reduce the length of hospital stays among patients hospitalized for pneumonia. Furthermore, preliminary findings from a feasibility study demonstrated that early treatment with a combination of an inhaled corticosteroid and a bronchodilator can improve oxygenation and reduce risk of respiratory failure in patients at risk of acute respiratory distress syndrome. Whether such a combination administered early is effective in reducing acute respiratory failure (ARF) among patients hospitalized with pneumonia is unknown. Here we describe the ARREST Pneumonia (Arrest Respiratory Failure due to Pneumonia) trial designed to address this question. ARREST Pneumonia is a two-arm, randomized, double-blinded, placebo-controlled trial designed to test the efficacy of a combination of an inhaled corticosteroid and a ß-agonist compared with placebo for the prevention of ARF in hospitalized participants with severe pneumonia. The primary outcome is ARF within 7 days of randomization, defined as a composite endpoint of intubation and mechanical ventilation; need for high-flow nasal cannula oxygen therapy or noninvasive ventilation for >36 hours (each alone or combined); or death within 36 hours of being placed on respiratory support. The planned enrollment is 600 adult participants at 10 academic medical centers. In addition, we will measure selected plasma biomarkers to better understand mechanisms of action. The trial is funded by the U.S. National Heart Lung and Blood Institute.Clinical trial registered with www.clinicaltrials.gov (NCT04193878).


Subject(s)
COVID-19 , Pneumonia , Respiratory Insufficiency , Adult , Humans , Respiration, Artificial , Respiratory Insufficiency/therapy , SARS-CoV-2
14.
Nat Commun ; 12(1): 1967, 2021 03 30.
Article in English | MEDLINE | ID: covidwho-1159789

ABSTRACT

Type III interferons have been touted as promising therapeutics in outpatients with coronavirus disease 2019 (COVID-19). We conducted a randomized, single-blind, placebo-controlled trial (NCT04331899) in 120 outpatients with mild to moderate COVID-19 to determine whether a single, 180 mcg subcutaneous dose of Peginterferon Lambda-1a (Lambda) within 72 hours of diagnosis could shorten the duration of viral shedding (primary endpoint) or symptoms (secondary endpoint). In both the 60 patients receiving Lambda and 60 receiving placebo, the median time to cessation of viral shedding was 7 days (hazard ratio [HR] = 0.81; 95% confidence interval [CI] 0.56 to 1.19). Symptoms resolved in 8 and 9 days in Lambda and placebo, respectively, and symptom duration did not differ significantly between groups (HR 0.94; 95% CI 0.64 to 1.39). Both Lambda and placebo were well-tolerated, though liver transaminase elevations were more common in the Lambda vs. placebo arm (15/60 vs 5/60; p = 0.027). In this study, a single dose of subcutaneous Peginterferon Lambda-1a neither shortened the duration of SARS-CoV-2 viral shedding nor improved symptoms in outpatients with uncomplicated COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/drug therapy , Interleukins/administration & dosage , Polyethylene Glycols/administration & dosage , Adult , Aged , COVID-19/virology , Female , Humans , Injections, Subcutaneous , Male , Middle Aged , Outpatients , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Single-Blind Method , Treatment Failure , Virus Shedding/drug effects , Young Adult
16.
Clin Trials ; 18(3): 324-334, 2021 06.
Article in English | MEDLINE | ID: covidwho-1063163

ABSTRACT

BACKGROUND: Clinical trials, conducted efficiently and with the utmost integrity, are a key component in identifying effective vaccines, therapies, and other interventions urgently needed to solve the COVID-19 crisis. Yet launching and implementing trials with the rigor necessary to produce convincing results is a complicated and time-consuming process. Balancing rigor and efficiency involves relying on designs that employ flexible features to respond to a fast-changing landscape, measuring valid endpoints that result in translational actions and disseminating findings in a timely manner. We describe the challenges involved in creating infrastructure with potential utility for shared learning. METHODS: We have established a shared infrastructure that borrows strength across multiple trials. The infrastructure includes an endpoint registry to aid in selecting appropriate endpoints, a registry to facilitate establishing a Data & Safety Monitoring Board, common data collection instruments, a COVID-19 dedicated design and analysis team, and a pragmatic platform protocol, among other elements. RESULTS: The authors have relied on the shared infrastructure for six clinical trials for which they serve as the Data Coordinating Center and have a design and analysis team comprising 15 members who are dedicated to COVID-19. The authors established a pragmatic platform to simultaneously investigate multiple treatments for the outpatient with adaptive features to add or drop treatment arms. CONCLUSION: The shared infrastructure provides appealing opportunities to evaluate disease in a more robust manner with fewer resources and is especially valued during a pandemic where efficiency in time and resources is crucial. The most important element of the shared infrastructure is the pragmatic platform. While it may be the most challenging of the elements to establish, it may provide the greatest benefit to both patients and researchers.


Subject(s)
COVID-19/therapy , Clinical Trials as Topic/methods , Pandemics , Clinical Trial Protocols as Topic , Clinical Trials Data Monitoring Committees , Endpoint Determination , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL