Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-338360

ABSTRACT

The SARS-CoV-2 main protease (3CLpro) has an indispensable role in the viral life cycle and is a therapeutic target for the treatment of COVID-19. The potential of 3CLpro-inhibitors to select for drug-resistant variants needs to be established. Therefore SARS-CoV-2 was passaged in vitro in the presence of increasing concentrations of ALG-097161, a probe compound designed in the context of a 3CLpro drug discovery program. We identified a combination of amino acid substitutions in 3CLpro (L50F E166A L167F) that is associated with > 20x increase in EC 50 values for ALG-097161, nirmatrelvir (PF-07321332) and PF-00835231. While two of the single substitutions (E166A and L167F) provide low-level resistance to the inhibitors in a biochemical assay, the triple mutant results in the highest levels of resistance (6- to 72-fold). All substitutions are associated with a significant loss of enzymatic 3CLpro activity, suggesting a reduction in viral fitness. Structural biology analysis indicates that the different substitutions reduce the number of inhibitor/enzyme interactions while the binding of the substrate is maintained. These observations will be important for the interpretation of resistance development to 3CLpro inhibitors in the clinical setting.

2.
Molecules ; 27(9)2022 May 03.
Article in English | MEDLINE | ID: covidwho-1820344

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. While the development of vaccines and the emergence of antiviral therapeutics is promising, alternative strategies to combat COVID-19 (and potential future pandemics) remain an unmet need. Coronaviruses feature a unique mechanism that may present opportunities for therapeutic intervention: the RNA polymerase complex of coronaviruses is distinct in its ability to proofread and remove mismatched nucleotides during genome replication and transcription. The proofreading activity has been linked to the exonuclease (ExoN) activity of non-structural protein 14 (NSP14). Here, we review the role of NSP14, and other NSPs, in SARS-CoV-2 replication and describe the assays that have been developed to assess the ExoN function. We also review the nucleoside analogs and non-nucleoside inhibitors known to interfere with the proofreading activity of NSP14. Although not yet validated, the potential use of non-nucleoside proofreading inhibitors in combination with chain-terminating nucleosides may be a promising avenue for the development of anti-CoV agents.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Exoribonucleases/metabolism , Humans , Pandemics , RNA, Viral/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
3.
Curr Opin Virol ; 49: 36-40, 2021 08.
Article in English | MEDLINE | ID: covidwho-1201247

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. The coronavirus 3-chymotrypsin-like protease (3CLpro) controls virus replication and is therefore considered a major target and promising opportunity for rational-based antiviral discovery with direct acting agents. Here we review first-generation SARS-CoV-2 3CLpro inhibitors PF-07304814, GC-376, and CDI-45205 that are being delivered either by injection or inhalation due to their low intrinsic oral bioavailability. In addition, PF-07321332 is now emerging as a promising second-generation clinical candidate for oral delivery. A key challenge to the development of novel 3CLpro inhibitors is the poor understanding of the predictive value of in vitro potency toward clinical efficacy, an issue complicated by the involvement of host proteases in virus entry. Further preclinical and clinical validation will be key to establishing 3CLpro inhibitors as a bona fide class for future SARS-CoV-2 therapeutics for both hospitalized and outpatient populations.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/therapeutic use , Drug Administration Routes , Drug Development , Drug Discovery , Humans , SARS-CoV-2/enzymology
4.
SLAS Discov ; 26(6): 766-774, 2021 07.
Article in English | MEDLINE | ID: covidwho-1192708

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the global COVID-19 pandemic. Nonstructural protein 14 (NSP14), which features exonuclease (ExoN) and guanine N7 methyltransferase activity, is a critical player in SARS-CoV-2 replication and fidelity and represents an attractive antiviral target. Initiating drug discovery efforts for nucleases such as NSP14 remains a challenge due to a lack of suitable high-throughput assay methodologies. This report describes the combination of self-assembled monolayers and matrix-assisted laser desorption ionization mass spectrometry to enable the first label-free and high-throughput assay for NSP14 ExoN activity. The assay was used to measure NSP14 activity and gain insight into substrate specificity and the reaction mechanism. Next, the assay was optimized for kinetically balanced conditions and miniaturized, while achieving a robust assay (Z factor > 0.8) and a significant assay window (signal-to-background ratio > 200). Screening 10,240 small molecules from a diverse library revealed candidate inhibitors, which were counterscreened for NSP14 selectivity and RNA intercalation. The assay methodology described here will enable, for the first time, a label-free and high-throughput assay for NSP14 ExoN activity to accelerate drug discovery efforts and, due to the assay flexibility, can be more broadly applicable for measuring other enzyme activities from other viruses or implicated in various pathologies.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Exonucleases/antagonists & inhibitors , Exoribonucleases/antagonists & inhibitors , High-Throughput Screening Assays , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , COVID-19/virology , Cloning, Molecular , Enzyme Assays , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Exonucleases/genetics , Exonucleases/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Substrate Specificity , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
5.
Biochem Biophys Res Commun ; 555: 134-139, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-1157141

ABSTRACT

There is an urgent need for antivirals targeting the SARS-CoV-2 virus to fight the current COVID-19 pandemic. The SARS-CoV-2 main protease (3CLpro) represents a promising target for antiviral therapy. The lack of selectivity for some of the reported 3CLpro inhibitors, specifically versus cathepsin L, raises potential safety and efficacy concerns. ALG-097111 potently inhibited SARS-CoV-2 3CLpro (IC50 = 7 nM) without affecting the activity of human cathepsin L (IC50 > 10 µM). When ALG-097111 was dosed in hamsters challenged with SARS-CoV-2, a robust and significant 3.5 log10 (RNA copies/mg) reduction of the viral RNA copies and 3.7 log10 (TCID50/mg) reduction in the infectious virus titers in the lungs was observed. These results provide the first in vivo validation for the SARS-CoV-2 3CLpro as a promising therapeutic target for selective small molecule inhibitors.


Subject(s)
Amides/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Disease Models, Animal , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Amides/pharmacokinetics , Animals , COVID-19/virology , Cathepsin L/antagonists & inhibitors , Cell Line , Cricetinae , Cysteine Proteinase Inhibitors/pharmacokinetics , Female , Humans , Inhibitory Concentration 50 , Male , Mesocricetus/virology , Reproducibility of Results , SARS-CoV-2/growth & development , Serine Endopeptidases , Substrate Specificity , Virus Replication/drug effects
6.
Antiviral Res ; 187: 105020, 2021 03.
Article in English | MEDLINE | ID: covidwho-1051448

ABSTRACT

The 3-chymotrypsin-like cysteine protease (3CLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered a major target for the discovery of direct antiviral agents. We previously reported the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay (Gurard-Levin et al., 2020). The assay was further improved by adding the rhinovirus HRV3C protease to the same well as the SARS-CoV-2 3CLpro enzyme. High substrate specificity for each enzyme allowed the proteases to be combined in a single assay reaction without interfering with their individual activities. This novel duplex assay was used to profile a diverse set of reference protease inhibitors. The protease inhibitors were grouped into three categories based on their relative potency against 3CLpro and HRV3C including those that are: equipotent against 3CLpro and HRV3C (GC376 and calpain inhibitor II), selective for 3CLpro (PF-00835231, calpain inhibitor XII, boceprevir), and selective for HRV3C (rupintrivir). Structural analysis showed that the combination of minimal interactions, conformational flexibility, and limited bulk allows GC376 and calpain inhibitor II to potently inhibit both enzymes. In contrast, bulkier compounds interacting more tightly with pockets P2, P3, and P4 due to optimization for a specific target display a more selective inhibition profile. Consistently, the most selective viral protease inhibitors were relatively weak inhibitors of human cathepsin L. Taken together, these results can guide the design of cysteine protease inhibitors that are either virus-specific or retain a broad antiviral spectrum against coronaviruses and rhinoviruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Rhinovirus/drug effects , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Binding Sites , Cathepsin L/metabolism , Drug Discovery , Glycoproteins/pharmacology , Humans , Kinetics , Models, Molecular , Protease Inhibitors/chemistry , Pyrrolidines/pharmacology , Sulfonic Acids
7.
Antiviral Res ; 182: 104924, 2020 10.
Article in English | MEDLINE | ID: covidwho-743859

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that began in 2019. The coronavirus 3-chymotrypsin-like cysteine protease (3CLpro) controls replication and is therefore considered a major target for antiviral discovery. This study describes the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay. Compared with a traditional FRET readout, the label-free SAMDI-MS assay offers greater sensitivity and eliminates false positive inhibition from compound interference with the optical signal. The SAMDI-MS assay was optimized and validated with known inhibitors of coronavirus 3CLpro such as GC376 (IC50 = 0.060 µM), calpain inhibitors II and XII (IC50 ~20-25 µM). The FDA-approved drugs shikonin, disulfiram, and ebselen did not inhibit SARS-CoV-2 3CLpro activity in the SAMDI-MS assay under physiologically relevant reducing conditions. The three drugs did not directly inhibit human ß-coronavirus OC-43 or SARS-CoV-2 in vitro, but instead induced cell death. In conclusion, the SAMDI-MS 3CLpro assay, combined with antiviral and cytotoxic assessment, provides a robust platform to evaluate antiviral agents directed against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Glycoproteins/pharmacology , HeLa Cells , Humans , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL