Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Eur Heart J ; 43(Suppl 2), 2022.
Article in English | PubMed Central | ID: covidwho-2107416

ABSTRACT

Background: Clinical manifestations of children's coronavirus disease-2019 (COVID-19) were initially considered less severe compared with adult patients. However, there is now increasing evidence of a “long-tail” of COVID-19 related symptoms lasting for several months after recovery from the acute infection. Long COVID-19-related symptoms and mechanisms are poorly characterized and understood, with several phenotypes reported, often driven by long-term tissue damage (such as lung, heart and brain) and pathological inflammation due to viral persistence and/or immune deregulation. Purpose: The objective of this study was to evaluate atrio-ventricular mechanics, by means of two-dimensional speckle-tracking echocardiography, in previously healthy children recovered from asymptomatic or mildly symptomatic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in a long-term follow-up. Methods: We analysed a cohort of 157 paediatric patients, mean age 7±4 years, who had a confirmed diagnosis of SARS-CoV-2 infection and were asymptomatic or mildly symptomatic for COVID-19. Patients underwent standard transthoracic echocardiogram and speckle tracking echocardiographic study 148±68 days after diagnosis. One hundred seven age, sex, and body surface area comparable healthy subjects were used as control group. Results: Left ventricular ejection fraction was within normal limits in postCOVID-19 cases and CTRL with no significant differences between the two groups (postCOVID-19: 65.6±4% vs CTRL: 65.0±5%, p=0.182).Left ventricular (LV) global longitudinal strain (postCOVID-19: −20.5±2.9%;CTRL: −21.8±1.7%;p<0.001) was significantly reduced in cases compared with CTRLs. An amount of 11 (7%) postCOVID-19 cases showed impaired GLS values < −17% and 95 subjects (60%) presented with a strain lower than −16% in more than 2 segments. These subjects did not show any difference regarding symptoms or serological findings. Moreover, GLS was significantly reduced in children with disease's onset during the second wave of COVID-19 pandemic, compared with those during the first wave (second wave: −20.2±2.6%;first wave: −21.2±3.4%;p=0.048). Finally, peak left atrial systolic strain was within the normal range in the postCOVID-19 group with no significant differences compared to CTRL (postCOVID-19: 49.1±12%;CTRL: 49.5±18%). Conclusions: SARS-CoV-2 infection may affect left ventricular deformation in children despite an asymptomatic or only mildly symptomatic acute illness. Our data show an amount of 60% of children, recovering from asymptomatic or mildly symptomatic COVID-19, with still mild subclinical systolic cardiac impairment in the mid- and long-term follow-up after the infection. This subtle impairment was seen to be worse in children recovering from the second wave of COVID-19 compared to the first one.A follow-up is needed to verify the reversibility of these alterations and their impact on long-term outcomes. Funding Acknowledgement: Type of funding sources: None.

2.
Cardiology in the Young ; 32(Supplement 2):S87, 2022.
Article in English | EMBASE | ID: covidwho-2062123

ABSTRACT

Background and Aim: Growing evidence has documented a severe systemic hyperinflammation syndrome affecting children previ-ously exposed to SARS-CoV-2, known as Multisystem Inflammatory Syndrome in Children (MIS-C). Cardiovascular manifestations in MIS-C are frequent (34%-82%). The aim of our study was to describe the early and late cardiac abnormalities in patients with MIS-C, assessed by standard echocardiography, speckle tracking echocardiography (STE), and cardiac MRI (CMR). Method(s): 32 consecutive patients (21M, 11F), mean age 8.25 +/- 4years (range 1.3-17.7), with confirmed MIS-C diagnosis were enrolled in this study. Clinical, laboratory and microbiological data were collected. At disease onset, all children underwent standard transthoracic echocardiography, STE with analysis of left ventricle global longitudinal strain (GLS) and 23 (75%) of them performed CMR. Patients underwent complete cardiological evaluation, including echocardiography and STE at two months (T1) and six months (T2) after diagnosis. CMR was repeated at six months after diagnosis. Result(s): Cardiovascular symptoms were present in 45.8% of cases. Thirteen children (40.6%) shared Kawasaki Disease-like symp-toms, and 5 (15.6%) needed ICU admission. Early survival was 100%. All patients showed an hyperinflammatory state. Tn-I was elevated in 20 (62.5%) and BNP in 28 (87.5%) patients. Mean LVEF at baseline was 58.8 +/- 10% with 10 patients (31%) below 55%. STE showed reduced mean LV GLS (-17.4 +/- 4%). On CMR, LGE with nonischemic pattern was evident in 8/23 patients (35%). Follow-up data showed rapid improvement of LVEF at T1 (62.5 +/- 7.5 vs. 58.8 +/- 10.6%, p value 0.044) with only three patients (10%) below <= 55% at T1 and one (4%) at T2. LV GLS remained impaired at T1 (-17.2 +/- 2.7 vs.-17.4 +/- 4, p value 0.71), and significantly improved at T2 (-19 +/- 2.6% vs.-17.4 +/- 4%, p value 0.009). LV GLS was impaired (gt;-18%) in 53% of patients at baseline and T1, while only 13% showed persistent LV GLS reduc-tion at T2. Follow-up CMR showed LGE persistence in 33.4% of cases. Conclusion(s): Even though, early cardiac involvement significantly improves during follow-up, subclinical myocardial damage seems to be still detectable 6 months follow up in one third of MIS-C patients.

3.
European heart journal. Cardiovascular Imaging ; 23(Suppl 1), 2022.
Article in English | EuropePMC | ID: covidwho-1998671

ABSTRACT

Funding Acknowledgements Type of funding sources: Public hospital(s). Main funding source(s): University Hospital of Padua Background/Introduction: In recent years there has been a growing interest in artificial intelligence (AI) applications in the echocardiography field. This is in order to simplify, reduce time and amplify the use of advanced analyses in the echo lab. Purpose to compare results of the fully automated analysis and manual tracing analysis using a new intuitive software. Methods 28 consecutive previously healthy patients less than 18 years old who were screened at our Center for cardiac evaluation within 6 months after an asymptomatic or paucisymptomatic COVID19 infection were enrolled. All they were in sinus rhythm. Standard transthoracic echocardiography (TTE) was performed for each patient using Canon Aplio i900, software 2D Wall Motion Tracking. Optimized apical 4-, 3- and 2- chamber views, mitral valve inflow pattern and LVOT Doppler interrogation were collected. Off-line data analysis of each examination was performed by both fully automated analysis (AI) and pediatric cardiologists with experience in echocardiography i.e. by manual tracing, evaluation and adjustment of the track by the operator (Echocardiographers). Operators were blinded to the AI analysis. To measure intraobserver variability, evaluations of 16 patients datasets were performed twice by both operators and AI. Results Patients’ demographic data were: age 9,8+/-4,7 years;males 22 (78%);height 134,3+/- 34,9 cm;weight 41,8+/-28,7 kg;BSA 1,2+/-0,4 mq, HR 85+/-15/min. The time taken for off-line analysis by AI and echocardiographers was 4-5 and 13-20 minutes, respectively. Reproducibility of echocardiographers’ analysis was found to be excellent for left ventricle assessment (IC from 0,88 to 0,98);moderate for LVOT mean gradient (IC 0,73), RV end diastolic area (IC 0,69) and right atrial strain (IC 0,59);poor for deceleration time (IC 0,5), left ventricle strain (IC 0,49), RV FAC and strain (IC from 0,27 to 0,45). Conversely, reproducibility of the AI analysis was found to be excellent for any parameter (ICC from 0,87 to 0,99) (Table 1). About the mitralic valve inflow pattern assessment, despite the excellent reproducibility of AI analysis, the margin of error was found to be high. Particularly, a systematic error was observed with a tendency of the AI to overestimate deceleration time (DT-AI 176,6 ± 63,8 vs DT-Ecocardiographers 150,4 ± 24,3). Conclusion(s): Fully automated analysis is technically simple, less time consuming and highly reproducible. AI analysis of the mitralic inflow pattern should be optimized, having found a systematic error in the calculation of deceleration time. Reproducibility is the strong point of AI. This reduces the variability of manual measurements between different sonographers and at different times. Table 1. Echocardiographic measurements

5.
European Heart Journal Cardiovascular Imaging ; 23(SUPPL 1):i250, 2022.
Article in English | EMBASE | ID: covidwho-1795317

ABSTRACT

Background/Introduction: In recent years there has been a growing interest in artificial intelligence (AI) applications in the echocardiography field. This is in order to simplify, reduce time and amplify the use of advanced analyses in the echo lab. Purpose: to compare results of the fully automated analysis and manual tracing analysis using a new intuitive software. Methods: 28 consecutive previously healthy patients less than 18 years old who were screened at our Center for cardiac evaluation within 6 months after an asymptomatic or paucisymptomatic COVID19 infection were enrolled. All they were in sinus rhythm. Standard transthoracic echocardiography (TTE) was performed for each patient using Canon Aplio i900, software 2D Wall Motion Tracking. Optimized apical 4-, 3- and 2- chamber views, mitral valve inflow pattern and LVOT Doppler interrogation were collected. Off-line data analysis of each examination was performed by both fully automated analysis (AI) and pediatric cardiologists with experience in echocardiography i.e. by manual tracing, evaluation and adjustment of the track by the operator (Echocardiographers). Operators were blinded to the AI analysis. To measure intraobserver variability, evaluations of 16 patients datasets were performed twice by both operators and AI. Results: Patients' demographic data were: age 9,8+/-4,7 years;males 22 (78%);height 134,3+/- 34,9 cm;weight 41,8+/-28,7 kg;BSA 1,2+/-0,4 mq, HR 85+/-15/min. The time taken for off-line analysis by AI and echocardiographers was 4-5 and 13-20 minutes, respectively. Reproducibility of echocardiographers' analysis was found to be excellent for left ventricle assessment (IC from 0,88 to 0,98);moderate for LVOT mean gradient (IC 0,73), RV end diastolic area (IC 0,69) and right atrial strain (IC 0,59);poor for deceleration time (IC 0,5), left ventricle strain (IC 0,49), RV FAC and strain (IC from 0,27 to 0,45). Conversely, reproducibility of the AI analysis was found to be excellent for any parameter (ICC from 0,87 to 0,99) (Table 1). About the mitralic valve inflow pattern assessment, despite the excellent reproducibility of AI analysis, the margin of error was found to be high. Particularly, a systematic error was observed with a tendency of the AI to overestimate deceleration time (DT-AI 176,6 ± 63,8 vs DTEcocardiographers 150,4 ± 24,3). Conclusion(s): Fully automated analysis is technically simple, less time consuming and highly reproducible. AI analysis of the mitralic inflow pattern should be optimized, having found a systematic error in the calculation of deceleration time. Reproducibility is the strong point of AI. This reduces the variability of manual measurements between different sonographers and at different times.

6.
European Heart Journal Cardiovascular Imaging ; 23(SUPPL 1):i252-i253, 2022.
Article in English | EMBASE | ID: covidwho-1795316

ABSTRACT

Background/Introduction: Ejection fraction (EF) is a parameter widely used in Echolab to evaluate left ventricular function. Recently, in parallel with the growing interest in artificial intelligence (AI), attemps have been made to create automated systems for EF assessment, in order to reduce time and improve the accuracy of the analysis. Purpose: to compare results of different methods of EF assessment: visual estimation (visual EF), manual and fully automated analysis. Methods: 28 consecutive pediatric patients were enrolled. This cohort of previously healthy patients was screened at our Center for cardiac evaluation within 6 months after an asymptomatic or paucisymptomatic COVID19 infection. All they were in sinus rhythm. Optimized apical 4- and 2- chamber views were collected for each patient using Canon Aplio i900. Off-line EF assessment was first evaluated visually by pediatric cardiologists with experience in echocardiography, then performed by both fully automated analysis (AI) using two different methods (Automatic Simpson -AI Simpson- and Wall Motion Tracking -AI WMT-) and pediatric cardiologists through manual tracing of endocardial border (Manual Simpson and Manual WMT respectively). Operators were blinded to the AI analysis. To measure intraobserver variability, evaluations of 16 patients' datasets were performed twice by both operators and AI. Results: Patients' demographic data were: age 9,8+/-4,7 years;males 22 (78%);height 134,3+/- 34,9 cm;weight 41,8+/-28,7 kg;BSA 1,2+/-0,4 mq, HR 85+/-15/min. The time taken for off-line analysis was 0.3-0.7 minutes, 1-1.5 minutes, 1-3 minutes and 3-4 minutes, respectively for AI WMT, AI Simpson, Manual WMT and Manual Simpson. As expected, visual EF showed high intraobserver variability and a poor reproducibility (ICC 43%). AI analysis revealed a good to excellent reproducibility (ICC from 80% to 99%, depending on the method used). WMT methods had the best reproducibility both for manual tracing of endocardial border and fully automated analysis (Table 1). The comparison between different methods (Table 2) showed a good agreement between AI Simpson and AI WMT (mean bias 2,9, from -3,2 to 9,0, ICC 86%). A moderate correlation was found between different methods of AI analysis while only poor correlation was found between manual Simpson and manual WMT (Table 2). Conclusion(s): Automatic Simpson and Wall Motion Tracking are two different fully automated methods which can be used for left ventricular function assessment. AI reproducibility is high for both methods, higher for WMT. WMT method is also less time consuming and improves reproducibility of manual tracing of endocardial borderd analysis.

7.
European Heart Journal Cardiovascular Imaging ; 22(SUPPL 1):i193, 2021.
Article in English | EMBASE | ID: covidwho-1185662

ABSTRACT

Background: Evidence suggests that clinical manifestations of children's COVID-19 may be less severe. However, it has been described the pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) which resembles other inflammatory conditions (i.e. Kawasaki disease). Patients affected by PIMS-TS showed cardiac involvement with myocardial injury, reduced left ventricle systolic function and coronary artery abnormalities. Little is known regarding cardiac involvement in pediatric patients with asymptomatic or mildly symptomatic SARS-CoV-2 infection. Methods: We analyzed 23 pediatric patients (13males, 56%) with diagnosis of SARS-CoV-2 infection based on PCR analysis of nasopharin-geal swab (NPS), and asymptomatic or only mildly symptomatic for COVID-19. Patients underwent standard transthoracic echocardiogram (TTE) within 2-3 month from diagnosis and after negative NPS for SARS-CoV-2. We performed offline analysis with GE EchoPAC software to measure global longitudinal strain (GLS) of the LV using 2D speckle tracking imaging. Therefore, we compared the results with a matched group of 23 controls (13males, 56%). Results: Cases and controls were similar regarding age (5.9 ± 4.1years vs. 6.4 ± 4.4 years, p = 0.63), body surface area (0.98 ± 0.3m2 vs. 0.8 ± 0.4m2, p = 0.17), LV FS (37.9 ± 5.9% vs. 36.4 ± 8.3%, p = 0.74) and LV biplane EF (63.9 ± 5.2% vs. 66.4 ± 5.3%, p = 0.11). GLS analysis showed significant strain reduction of the LV mid-wall segments and of the basal anterior, posterior and septal inferior segments among cases compared to controls. Furthermore, in the case group there were 7 subjects (30%) with a strain below 16.5% in at least 3 segments. Conclusion: SARS-CoV-2 infection may affect LV deformation in asymptomatic or only mildly symptomatic children, showing a peculiar pattern with lower longitudinal strain in all mid-wall segments of LV compared to control subjects. The clinical significance of this findings is unclear and follow-up is needed to verify the reversibility of this alterations.

SELECTION OF CITATIONS
SEARCH DETAIL