Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Add filters

Document Type
Year range
arxiv; 2023.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2306.11003v1


The onset of the COVID-19 pandemic drove a widespread, often uncoordinated effort by research groups to develop mathematical models of SARS-CoV-2 to study its spread and inform control efforts. The urgent demand for insight at the outset of the pandemic meant early models were typically either simple or repurposed from existing research agendas. Our group predominantly uses agent-based models (ABMs) to study fine-scale intervention scenarios. These high-resolution models are large, complex, require extensive empirical data, and are often more detailed than strictly necessary for answering qualitative questions like "Should we lockdown?" During the early stages of an extraordinary infectious disease crisis, particularly before clear empirical evidence is available, simpler models are more appropriate. As more detailed empirical evidence becomes available, however, and policy decisions become more nuanced and complex, fine-scale approaches like ours become more useful. In this manuscript, we discuss how our group navigated this transition as we modeled the pandemic. The role of modelers often included nearly real-time analysis, and the massive undertaking of adapting our tools quickly. We were often playing catch up with a firehose of evidence, while simultaneously struggling to do both academic research and real-time decision support, under conditions conducive to neither. By reflecting on our experiences of responding to the pandemic and what we learned from these challenges, we can better prepare for future demands.

Communicable Diseases , COVID-19
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.03.20225409


Policymakers make decisions about COVID-19 management in the face of considerable uncertainty. We convened multiple modeling teams to evaluate reopening strategies for a mid-sized county in the United States, in a novel process designed to fully express scientific uncertainty while reducing linguistic uncertainty and cognitive biases. For the scenarios considered, the consensus from 17 distinct models was that a second outbreak will occur within 6 months of reopening, unless schools and non-essential workplaces remain closed. Up to half the population could be infected with full workplace reopening; non-essential business closures reduced median cumulative infections by 82%. Intermediate reopening interventions identified no win-win situations; there was a trade-off between public health outcomes and duration of workplace closures. Aggregate results captured twice the uncertainty of individual models, providing a more complete expression of risk for decision-making purposes.

Cognition Disorders , COVID-19
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.05.369264


The widespread occurrence of SARS-CoV-2 has had a profound effect on society and a vaccine is currently being developed. Angiotensin-converting enzyme 2 (ACE2) is the primary host cell receptor that interacts with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Although pneumonia is the main symptom in severe cases of SARS-CoV-2 infection, the expression levels of ACE2 in the lung is low, suggesting the presence of another receptor for the spike protein. In order to identify the additional receptors for the spike protein, we screened a receptor for the SARS-CoV-2 spike protein from the lung cDNA library. We cloned L-SIGN as a specific receptor for the N-terminal domain (NTD) of the SARS-CoV-2 spike protein. The RBD of the spike protein did not bind to L-SIGN. In addition, not only L-SIGN but also DC-SIGN, a closely related C-type lectin receptor to L-SIGN, bound to the NTD of the SARS-CoV-2 spike protein. Importantly, cells expressing L-SIGN and DC-SIGN were both infected by SARS-CoV-2. Furthermore, L-SIGN and DC-SIGN induced membrane fusion by associating with the SARS-CoV-2 spike protein. Serum antibodies from infected patients and a patient-derived monoclonal antibody against NTD inhibited SARS-CoV-2 infection of L-SIGN or DC-SIGN expressing cells. Our results highlight the important role of NTD in SARS-CoV-2 dissemination through L-SIGN and DC-SIGN and the significance of having anti-NTD neutralizing antibodies in antibody-based therapeutics.

Severe Acute Respiratory Syndrome , COVID-19 , Pneumonia
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.05.369413


SARS-CoV-2 is a coronavirus that sparked the current COVID-19 pandemic. To stop the shattering effect of COVID-19, effective and safe vaccines, and antiviral therapies are urgently needed. To facilitate the preclinical evaluation of intervention approaches, relevant animal models need to be developed and validated. Rhesus macaques (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis) are widely used in biomedical research and serve as models for SARS-CoV-2 infection. However, differences in study design make it difficult to compare and understand potential species-related differences. Here, we directly compared the course of SARS-CoV-2 infection in the two genetically closely-related macaque species. After inoculation with a low passage SARS-CoV-2 isolate, clinical, virological, and immunological characteristics were monitored. Both species showed slightly elevated body temperatures in the first days after exposure while a decrease in physical activity was only observed in the rhesus macaques and not in cynomolgus macaques. The virus was quantified in tracheal, nasal, and anal swabs, and in blood samples by qRT-PCR, and showed high similarity between the two species. Immunoglobulins were detected by various enzyme-linked immunosorbent assays (ELISAs) and showed seroconversion in all animals by day 10 post-infection. The cytokine responses were highly comparable between species and computed tomography (CT) imaging revealed pulmonary lesions in all animals. Consequently, we concluded that both rhesus and cynomolgus macaques represent valid models for evaluation of COVID-19 vaccine and antiviral candidates in a preclinical setting.

COVID-19 , Lung Diseases
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.04.369041


Motivation: In the event of an outbreak due to an emerging pathogen, time is of the essence to contain or to mitigate the spread of the disease. Drug repositioning is one of the strategies that has the potential to deliver therapeutics relatively quickly. The SARS-CoV-2 pandemic has shown that integrating critical data resources to drive drug-repositioning studies, involving host-host, host-pathogen and drug-target interactions, remains a time-consuming effort that translates to a delay in the development and delivery of a life-saving therapy. Results: Here, we describe a workflow we designed for a semi-automated integration of rapidly emerging datasets that can be generally adopted in a broad network pharmacology research setting. The workflow was used to construct a COVID-19 focused multimodal network that integrates 487 host-pathogen, 74,805 host-host protein and 1,265 drug-target interactions. The resultant Neo4j graph database named "Neo4COVID19" is accessible via a web interface and via API calls based on the Bolt protocol. We believe that our Neo4COVID19 database will be a valuable asset to the research community and will catalyze the discovery of therapeutics to fight COVID-19. Availability: . Keywords: SARS-CoV-2, COVID-19, network pharmacology, graph database, Neo4j, data integration, drug repositioning