Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-321965

ABSTRACT

• Background: Late 2019, a new highly contagious corona-virus SARS-CoV-2 has emerged in Wuhan, China, causing within two month a pandemic with the highest disease burden in elderly and people with pre-existing medical conditions. The pandemic has highlighted that new and more flexible clinical trial approaches, such as trial platforms, are needed to assess the efficacy and safety of interventions in a timely manner. The two existing Swiss cohorts of immunocompromised patients (i.e. Swiss HIV Cohort Study (SHCS) and Swiss Transplant Cohort Study (STCS)) are an ideal foundation to set-up a trial platform in Switzerland leveraging routinely collected data. Within a newly founded trial platform we plan to assess the efficacy of the first two mRNA SARS-CoV-2 vaccines that reached market authorisation in Switzerland in the frame of a pilot randomised controlled trial (RCT) while at the same time assessing the functionality of the trial platform.• Methods: We will conduct a multicenter randomised controlled, open-label, 2-arm sub-study pilot trial of a platform trial nested into two Swiss cohorts. Patients included in the SHCS or the STCS will be eligible for randomization to either receiving the mRNA vaccine Comirnaty® (Pfizer / BioNTech) or the Covid-19 mRNA Vaccine Moderna®. The primary clinical outcome will be change in pan-lg antibody response (pan-Ig anti-S1-RBD;baseline vs. three months after first vaccination). The pilot study will also enable us to assess endpoints related to trial conduct feasibility (i.e. duration of RCT set-up;time of patient recruitment;patient consent rate;proportion of missing data). Assuming vaccine reactivity of 90% in both vaccine groups we power our trial, using a non-inferiority margin such that a 95% two-sided confidence interval excludes a difference in favour of the reference group of more than 10%. A sample size of 380 (190 in each treatment arm) is required for a statistical power of 90% and a type I error of 0.025. The study is funded by the Swiss National Science Foundation (National Research Program NRP 78, ‘Covid-19’). • Discussion: This study will provide crucial information about the efficacy and safety of the mRNA SARS-CoV-2 vaccines in HIV patients and organ transplant recipients. Furthermore, this project has the potential to pave the way for further platform trials in Switzerland. Trial registration : NCT04805125

2.
Trials ; 22(1): 724, 2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1477452

ABSTRACT

BACKGROUND: Late 2019, a new highly contagious coronavirus SARS-CoV-2 has emerged in Wuhan, China, causing within 2 months a pandemic with the highest disease burden in elderly and people with pre-existing medical conditions. The pandemic has highlighted that new and more flexible clinical trial approaches, such as trial platforms, are needed to assess the efficacy and safety of interventions in a timely manner. The two existing Swiss cohorts of immunocompromised patients (i.e., Swiss HIV Cohort Study (SHCS) and Swiss Transplant Cohort Study (STCS)) are an ideal foundation to set-up a trial platform in Switzerland leveraging routinely collected data. Within a newly founded trial platform, we plan to assess the efficacy of the first two mRNA SARS-CoV-2 vaccines that reached market authorization in Switzerland in the frame of a pilot randomized controlled trial (RCT) while at the same time assessing the functionality of the trial platform. METHODS: We will conduct a multicenter randomized controlled, open-label, 2-arm sub-study pilot trial of a platform trial nested into two Swiss cohorts. Patients included in the SHCS or the STCS will be eligible for randomization to either receiving the mRNA vaccine Comirnaty® (Pfizer/BioNTech) or the COVID-19 mRNA Vaccine Moderna®. The primary clinical outcome will be change in pan-lg antibody response (pan-Ig anti-S1-RBD; baseline vs. 3 months after first vaccination; binary outcome, considering ≥ 0.8 units/ml as a positive antibody response). The pilot study will also enable us to assess endpoints related to trial conduct feasibility (i.e., duration of RCT set-up; time of patient recruitment; patient consent rate; proportion of missing data). Assuming vaccine reactivity of 90% in both vaccine groups, we power our trial, using a non-inferiority margin such that a 95% two-sided confidence interval excludes a difference in favor of the reference group of more than 10%. A sample size of 380 (190 in each treatment arm) is required for a statistical power of 90% and a type I error of 0.025. The study is funded by the Swiss National Science Foundation (National Research Program NRP 78, "COVID-19"). DISCUSSION: This study will provide crucial information about the efficacy and safety of the mRNA SARS-CoV-2 vaccines in HIV patients and organ transplant recipients. Furthermore, this project has the potential to pave the way for further platform trials in Switzerland. TRIAL REGISTRATION: ClinicalTrials.gov NCT04805125 . Registered on March 18, 2021.


Subject(s)
COVID-19 , Viral Vaccines , Aged , COVID-19 Vaccines , Humans , Immunocompromised Host , Multicenter Studies as Topic , Pilot Projects , RNA, Messenger , Randomized Controlled Trials as Topic , SARS-CoV-2
3.
Swiss Med Wkly ; 151: w20572, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1332303

ABSTRACT

AIMS: The aim of this study was to analyse the demographics, risk factors and in-hospital mortality rates of patients admitted with coronavirus disease 2019 (COVID-19) to a tertiary care hospital in Switzerland. METHODS: In this single-centre retrospective cohort study at the University Hospital Basel, we included all patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection hospitalised from 27 February 2020 to 10 May 2021. Patients’ characteristics were extracted from the electronic medical record system. The primary outcome of this study was temporal trends of COVID-19-related in-hospital mortality. Secondary outcomes were COVID-19-related mortality in patients hospitalised on the intensive care unit (ICU), admission to ICU, renal replacement therapy and length of hospital stay, as well as a descriptive analysis of risk factors for in-hospital mortality. RESULTS: During the study period we included 943 hospitalisations of 930 patients. The median age was 65 years (interquartile range [IQR] 53–76) and 63% were men. The numbers of elderly patients, patients with multiple comorbidities and need for renal replacement therapy decreased from the first and second to the third wave. The median length of stay and need for ICU admission were similar in all waves. Throughout the study period 88 patients (9.3%) died during the hospital stay. Crude in-hospital mortality was similar over the course of the first two waves (9.5% and 10.2%, respectively), whereas it decreased in the third wave (5.4%). Overall mortality in patients without comorbidities was low at 1.6%, but it increased in patients with any comorbidity to 12.6%. Predictors of all-cause mortality over the whole period were age (adjusted odds ratio [aOR] per 10-year increase 1.81, 95% confidence interval [CI] 1.45–2.26; p <0.001), male sex (aOR 1.68, 95% CI 1.00–2.82; p = 0.048), immunocompromising condition (aOR 2.09, 95% CI 1.01–4.33; p = 0.048) and chronic kidney disease (aOR 2.25, 95% CI 1.35–3.76; p = 0.002). CONCLUSION: In our study in-hospital mortality was 9.5%, 10.2% and 5.4% in the first, second and third waves, respectively. Age, immunocompromising condition, male sex and chronic kidney disease were factors associated with in-hospital mortality. Importantly, patients without any comorbidity had a very low in-hospital mortality regardless of age.


Subject(s)
COVID-19/diagnosis , Hospital Mortality/trends , Hospitalization/statistics & numerical data , Intensive Care Units/statistics & numerical data , SARS-CoV-2 , Aged , COVID-19/mortality , Cohort Studies , Comorbidity , Female , Humans , Kidney Diseases/epidemiology , Kidney Diseases/therapy , Length of Stay , Male , Middle Aged , Renal Replacement Therapy/adverse effects , Retrospective Studies , Risk Factors , Switzerland/epidemiology
4.
J Clin Med ; 10(11)2021 May 25.
Article in English | MEDLINE | ID: covidwho-1244049

ABSTRACT

Previous studies have indicated an association between coronavirus disease 2019 (COVID-19) and acute kidney injury (AKI) but lacked a control group. The prospective observational COronaVIrus-surviVAl (COVIVA) study performed at the University Hospital, Basel, Switzerland consecutively enrolled patients with symptoms suggestive of COVID-19. We compared patients who tested positive for SARS-CoV-2 with patients who tested negative but with an adjudicated diagnosis of a respiratory tract infection, including pneumonia. The primary outcome measure was death at 30 days, and the secondary outcomes were AKI incidence and a composite endpoint of death, intensive care treatment or rehospitalization at 30 days. Five hundred and seven patients were diagnosed with respiratory tract infections, and of those, 183 (36%) had a positive PCR swab test for SARS-CoV-2. The incidence of AKI was higher in patients with COVID-19 (30% versus 12%, p < 0.001), more severe (KDIGO stage 3, 22% versus 13%, p = 0.009) and more often required renal replacement therapy (4.4% versus 0.93%; p = 0.03). The risk of 30-day mortality and a composite endpoint was higher in patients with COVID-19-associated AKI (adjusted hazard ratio (aHR) mortality 3.98, 95% confidence interval (CI) 1.10-14.46, p = 0.036; composite endpoint aHR 1.84, 95% CI 1.02-3.31, p = 0.042). The mortality risk was attenuated when adjusting for disease severity (aHR 3.60, 95% CI 0.93-13.96, p = 0.062). AKI occurs more frequently and with a higher severity in patients with COVID-19 and is associated with worse outcomes.

5.
Swiss Med Wkly ; 151: w20482, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1128122

ABSTRACT

BACKGROUND: Data about patients in Europe with corona virus disease-2019 (COVID-19) and acute kidney injury (AKI) are scarce. We examined characteristics, presentation and risk factors of AKI in patients hospitalised with COVID-19 in a tertiary hospital in Switzerland. METHODS: We reviewed health records of patients hospitalised with a positive nasopharyngeal polymerase chain reaction test for SARS-CoV2 between 1 February and 30 June 2020, at the University Hospital of Basel. The nadir creatinine of the hospitalisation was used as baseline. AKI was defined according the KDIGO guidelines as a 1.5× increase of baseline creatinine and in-hospital renal recovery as a discharge creatinine <1.25× baseline creatinine. Least absolute shrinkage and selection operator (LASSO) regression was performed to select predictive variables of AKI. Based on this a final model was chosen. RESULTS: Of 188 patients with COVID-19, 41 (22%) developed AKI, and 11 (6%) required renal replacement therapy. AKI developed after a median of 9 days (interquartile range [IQR] 5-12) after the first symptoms and a median of 1 day (IQR 0-5) after hospital admission. The peak AKI stages were stage 1 in 39%, stage 2 in 24% and stage 3 in 37%. A total of 29 (15%) patients were admitted to the intensive care unit and of these 23 (79%) developed AKI. In-hospital renal recovery at discharge was observed in 61% of all AKI episodes. In-hospital mortality was 27% in patients with AKI and 10% in patients without AKI. Age (adjusted odds ratio [aOR] 1.04, 95% confidence interval [CI] 1.01­1.08; p = 0.024), history of chronic kidney disease (aOR 3.47, 95% CI 1.16­10.49;p = 0.026), C-reactive protein levels (aOR 1.09, 95% CI 1.03­1.06; p = 0.002) and creatinine kinase (aOR 1.03, 95% CI 1.01­1.06; p = 0.002) were associated with development of AKI. CONCLUSIONS: AKI is common in hospitalised patients with COVID-19 and more often seen in patients with severe COVID-19 illness. AKI is associated with a high in-hospital mortality.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , COVID-19/epidemiology , Acute Kidney Injury/mortality , Acute Kidney Injury/pathology , Age Factors , Aged , COVID-19/mortality , COVID-19/pathology , Comorbidity , Creatinine/blood , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Socioeconomic Factors , Switzerland , Tertiary Care Centers , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL