Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2215654.v1

ABSTRACT

Background Self-testing has been promoted as a means of increasing COVID-19 test coverage. In Belgium, self-testing was recommended as a complement to the formal, provider-administered indications, such as out of courtesy before meeting others and when feared to be infected. More than a year after the introduction of self-testing their place in the test strategy was evaluated.Methods We assessed trends in the number of self-tests sold, the number of positive self-tests reported, the proportion sold self-tests/total tests, and the proportion of all positive tests that were confirmed self-tests. To evaluate the reason why people use self-tests, we used the results of two online surveys among members of the general population: one among 27,397 people, held in April 2021, and one among 22,354 people, held in December 2021.Results The use of self-tests became substantial from end 2021 onwards. In the period mid-November 2021 – end-of-June 2022, the average proportion of reported sold self-tests to all COVID-19 tests was 37% and 14% of all positive tests were positive self-tests. In both surveys, the main reported reasons for using a self-test were having symptoms (34% of users in April 2021 and 31% in December 2021) and after a risk contact (27% in both April and December). Moreover, the number of self-tests sold, and the number of positive self-tests reported closely followed the same trend as the provider-administered tests in symptomatic people and high risk-contacts, which reinforces the hypothesis that they were mainly used for these two indications.Conclusions From end 2021 onwards, self-testing covered a significant part of COVID-19 testing in Belgium, which increased without doubt the testing coverage. However, the available data seem to indicate that self-testing was mostly used for indications outside of official recommendations. If and how this affected the control of the epidemic remains unknown.


Subject(s)
COVID-19
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1326456.v1

ABSTRACT

Background: Contact tracing is one of the main public health tools in the control of coronavirus disease 2019 (COVID-19). A centralized contact tracing system was developed in Belgium in 2020. We aim to evaluate the performance and describe the results, between January 01, 2021, and September 30, 2021. The characteristics of COVID-19 cases and the impact of COVID-19 vaccination on testing and tracing are also described.Methods: We combined laboratory diagnostic test data (molecular and antigen test), vaccination data, and contact tracing data. A descriptive analysis was done to evaluate the performance of contact tracing and describe insights into the epidemiology of COVID-19 by contact tracing. Results: Between January and September 2021, 555.181 COVID-19 cases were reported to the central contact center and 91% were contacted. The average delay between symptom onset and contact tracing initiation was around 5 days, of which 4 days corresponded to pre-testing delay. High-Risk Contacts (HRC) were reported by 49% of the contacted index cases. The mean number of reported HRC was 2.7. In total, 666.869 HRC were reported of which 91% were successfully contacted and 89% of these were tested at least once following the interview. The estimated average secondary attack rate (SAR) among the contacts of the COVID-19 cases who reported at least one contact, was 27% and was significantly higher among household HRC. The proportion of COVID-19 cases who were previously identified as HRC within the central system was 24%.Conclusions:The contact-tracing system contacted more than 90% of the reported COVID-19 cases and their HRC. This proportion remained stable between January 1 2021 and September 30 2021 despite an increase in cases in March-April 2021. We report high SAR, indicating that through contact tracing a large number of infections were prospectively detected. The system can be further improved by (1) reducing the delay between onset of illness and medical consultation (2) having more exhaustive reporting of HRC by the COVID-19 case. 


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.17.21260679

ABSTRACT

IntroductionWe assessed the usefulness of SARS-CoV-2 RT-PCR cycle thresholds (Ct) values trends produced by the LHUB-ULB (a consolidated microbiology laboratory located in Brussels, Belgium) for monitoring the epidemics dynamics at local and national levels and for improving forecasting models. MethodsSARS-CoV-2 RT-PCR Ct values produced from April 1, 2020, to May 15, 2021, were compared with national COVID-19 confirmed cases notifications according to their geographical and time distribution. These Ct values were evaluated against both a phase diagram predicting the number of COVID-19 patients requiring intensive care and an age-structured model estimating COVID-19 prevalence in Belgium. ResultsOver 155,811 RT-PCR performed, 12,799 were positive and 7,910 Ct values were available for analysis. The 14-day median Ct values were negatively correlated with the 14-day mean daily positive tests with a lag of 17 days. In addition, the 14-day mean daily positive tests in LHUB-ULB were strongly correlated with the 14-day mean confirmed cases in the Brussels-Capital and in Belgium with coinciding start, peak and end of the different waves of the epidemic. Ct values decreased concurrently with the forecasted phase-shifts of the diagram. Similarly, the evolution of 14-day median Ct values was negatively correlated with daily estimated prevalence for all age-classes. ConclusionWe provide preliminary evidence that trends of Ct values can help to both follow and predict the epidemics trajectory at local and national levels, underlining that consolidated microbiology laboratories can act as epidemic sensors as they gather data that are representative of the geographical area they serve.


Subject(s)
COVID-19
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-417041.v1

ABSTRACT

Background: With the spread of coronavirus disease 2019 (COVID-19), an existing national laboratory based surveillance system was adapted to daily monitor the epidemiological situation of SARS-CoV-2 in the Belgium by following the number of confirmed COVID-19 infections, the number of performed tests and the positivity ratio. We present these main indicators of the surveillance over a one-year period as well as the impact of the performance of the laboratories, regarding speed of processing the samples and reporting results, for surveillance.Methods: We describe the evolution of test capacity, testing strategy and the data collection methods during the first year of the epidemic in Belgium.Results: Between the 1th of March 2020 and the 28th of February 2021, 9,487,470 tests and 773,078 COVID-19 laboratory confirmed cases were reported. Two epidemic waves occurred, with a peak in April and October 2020. The capacity and performance of the laboratories improved continuously during 2020 resulting in a high level performance. Since the end of November 2020 90 to 95% of test results are reported at the latest the day after sampling was performed.Conclusions: Thanks to the effort of all laboratories a performant exhaustive national laboratory based surveillance system to monitor the epidemiological situation of SARS-CoV-2 was set up in Belgium in 2020. On top of expanding the number of laboratories performing diagnostics and significantly increasing the test capacity in Belgium, turnaround times between sampling and testing as well as reporting were optimized over the first year of this pandemic.


Subject(s)
COVID-19
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-371058.v1

ABSTRACT

Background: The knowledge of risk perceptions in primary care could help health authorities to manage epidemics. Methods A European multi-center study was conducted in France, Belgium and Spain to describe the perceptions, the level of anxiety and the feeling of preparedness of primary healthcare physicians towards the COVID-19 infection at the beginning of the pandemic. The factors associated with the feeling of preparedness were studied using multivariate logistic regressions. Results A total of 511 physicians participated to the study. Among them, only 16.3% (n = 82) were highly anxious about the pandemic, 50.6% (n = 254) had the feeling to have a high level of information, 80.5% (n = 409) found the measures taken by the health authorities suitable to limit the spread of COVID-19, and 45.2% (n = 229) felt prepared to face the epidemic. Factors associated with feeling prepared were: being a Spanish practitioner (adjusted OR = 4.34; 95%CI [2.47; 7.80]), being a man (aOR = 2.57, 95%CI [1.69; 3.96]), finding the measures taken by authorities appropriate (aOR = 1.72, 95%CI [1.01; 3.00]) and being highly informed (aOR = 4.82, 95%CI [2.62; 9.19]). Conclusions Regarding the dramatic evolution of the pandemic in Europe in the weeks following the study, it appears that information available at this time and transmitted to the physicians could have given a wrong assessment of the spread and the severity of the disease. It seems essential to better integrate the primary care physicians into the information, training and protection channels. A comparison between countries could help to select the most effective measures in terms of information and communication.


Subject(s)
COVID-19 , Anxiety Disorders
SELECTION OF CITATIONS
SEARCH DETAIL