Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Reference Module in Life Sciences ; 2022.
Article in English | PMC | ID: covidwho-1956042
2.
Ann N Y Acad Sci ; 1510(1): 79-99, 2022 04.
Article in English | MEDLINE | ID: covidwho-1822055

ABSTRACT

Targeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome-lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms. On June 7 and 8, 2021, several experts in protein degradation pathways met virtually for the Keystone eSymposium "Targeting protein degradation: from small molecules to complex organelles." The event brought together researchers working in different protein degradation pathways in an effort to begin to develop a holistic, integrated vision of protein degradation that incorporates all the major pathways to understand how changes in them can lead to disease pathology and, alternatively, how they can be leveraged for novel therapeutics.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Autophagy/physiology , Humans , Organelles , Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Proteolysis , Ubiquitin/metabolism
3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-321402

ABSTRACT

Main protease and papain-like protease (PLpro) are essential coronaviral enzymes required for polypeptide processing during viral maturation. PLpro additionally cleaves proteinous post-translational modifications from host proteins to evade anti-viral immune responses. Here, we provide biochemical, structural and functional characterizations of PLpro from SARS-CoV-2 (PLproCoV2) and reveal differences to that of SARS (PLproSARS) in controlling interferon (IFN) and NF-kB pathways. PLproCoV2 and PLproSARS share 83% sequence identity, yet they differ in their host substrate preferences: PLproCoV2 predominantly cleaves the ubiquitin-like protein ISG15 off from host proteins, while PLproSARS preferentially targets ubiquitin chains. The crystal structure of PLproCoV2 in complex with ISG15 explains the affinity and higher specificity through distinctive binding to ISG15’s unique amino-terminal ubiquitin-like domain, and enabled the identification of GRL-0617 as a non-covalent candidate inhibitor for PLproCoV2. In human cells, PLproCoV2 cleaves ISG15 from interferon responsive factor 3 (IRF3), blocks its nuclear translocation, and reduces type I interferon responses, whereas PLproSARS preferentially mediates deubiquitination of critical components of the NF-kB pathway. Pharmacological inhibition of PLproCoV2 blocks the virus-induced cytopathogenic effect upon infection with SARS-CoV-2, fosters the anti- viral interferon pathway and reduces viral release from infected cells. We propose that therapeutic targeting of PLproCoV2 can suppress SARS-CoV-2 infection and promote anti-viral immunity.

4.
J Biol Chem ; 297(2): 100925, 2021 08.
Article in English | MEDLINE | ID: covidwho-1336599

ABSTRACT

Apart from prevention using vaccinations, the management options for COVID-19 remain limited. In retrospective cohort studies, use of famotidine, a specific oral H2 receptor antagonist (antihistamine), has been associated with reduced risk of intubation and death in patients hospitalized with COVID-19. In a case series, nonhospitalized patients with COVID-19 experienced rapid symptom resolution after taking famotidine, but the molecular basis of these observations remains elusive. Here we show using biochemical, cellular, and functional assays that famotidine has no effect on viral replication or viral protease activity. However, famotidine can affect histamine-induced signaling processes in infected Caco2 cells. Specifically, famotidine treatment inhibits histamine-induced expression of Toll-like receptor 3 (TLR3) in SARS-CoV-2 infected cells and can reduce TLR3-dependent signaling processes that culminate in activation of IRF3 and the NF-κB pathway, subsequently controlling antiviral and inflammatory responses. SARS-CoV-2-infected cells treated with famotidine demonstrate reduced expression levels of the inflammatory mediators CCL-2 and IL6, drivers of the cytokine release syndrome that precipitates poor outcome for patients with COVID-19. Given that pharmacokinetic studies indicate that famotidine can reach concentrations in blood that suffice to antagonize histamine H2 receptors expressed in mast cells, neutrophils, and eosinophils, these observations explain how famotidine may contribute to the reduced histamine-induced inflammation and cytokine release, thereby improving the outcome for patients with COVID-19.


Subject(s)
Famotidine/pharmacology , Histamine Antagonists/pharmacology , SARS-CoV-2/drug effects , Toll-Like Receptor 3/metabolism , A549 Cells , Binding Sites , Caco-2 Cells , Chemokine CCL2/metabolism , Coronavirus 3C Proteases/metabolism , HeLa Cells , Humans , Interferon Regulatory Factor-3/metabolism , Interleukin-6/metabolism , Molecular Docking Simulation , NF-kappa B/metabolism , Protein Binding , SARS-CoV-2/physiology , Signal Transduction , Toll-Like Receptor 3/chemistry , Virus Replication
5.
PLoS One ; 16(7): e0253364, 2021.
Article in English | MEDLINE | ID: covidwho-1315884

ABSTRACT

Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle.


Subject(s)
Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Single-Chain Antibodies/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , A549 Cells , Antigen-Antibody Complex , Humans , Inhibitory Concentration 50 , RNA-Dependent RNA Polymerase/immunology , RNA-Dependent RNA Polymerase/metabolism , Single-Chain Antibodies/immunology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism
6.
ACS Cent Sci ; 7(5): 792-802, 2021 May 26.
Article in English | MEDLINE | ID: covidwho-1225483

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global threat to human health. Using a multidisciplinary approach, we identified and validated the hepatitis C virus (HCV) protease inhibitor simeprevir as an especially promising repurposable drug for treating COVID-19. Simeprevir potently reduces SARS-CoV-2 viral load by multiple orders of magnitude and synergizes with remdesivir in vitro. Mechanistically, we showed that simeprevir not only inhibits the main protease (Mpro) and unexpectedly the RNA-dependent RNA polymerase (RdRp) but also modulates host immune responses. Our results thus reveal the possible anti-SARS-CoV-2 mechanism of simeprevir and highlight the translational potential of optimizing simeprevir as a therapeutic agent for managing COVID-19 and future outbreaks of CoV.

7.
Nature ; 587(7835): 657-662, 2020 11.
Article in English | MEDLINE | ID: covidwho-691112

ABSTRACT

The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread1,2. PLpro is also implicated in cleaving proteinaceous post-translational modifications on host proteins as an evasion mechanism against host antiviral immune responses3-5. Here we perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline differences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-κB pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit different host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high affinity and specificity of these interactions. Furthermore, upon infection, SCoV2-PLpro contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3) and attenuates type I interferon responses. Notably, inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, maintains the antiviral interferon pathway and reduces viral replication in infected cells. These results highlight a potential dual therapeutic strategy in which targeting of SCoV2-PLpro can suppress SARS-CoV-2 infection and promote antiviral immunity.


Subject(s)
COVID-19/immunology , COVID-19/virology , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Immunity, Innate , SARS-CoV-2/enzymology , SARS-CoV-2/immunology , Animals , COVID-19/drug therapy , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Cytokines/chemistry , Cytokines/metabolism , Deubiquitinating Enzymes/antagonists & inhibitors , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/metabolism , Humans , Interferon Regulatory Factor-3/metabolism , Interferons/immunology , Interferons/metabolism , Mice , Models, Molecular , Molecular Dynamics Simulation , NF-kappa B/immunology , NF-kappa B/metabolism , Protein Binding , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Ubiquitination , Ubiquitins/chemistry , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL