Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Document Type
Language
Year range
1.
Int J Nanomedicine ; 16: 383-402, 2021.
Article in English | MEDLINE | ID: covidwho-1076350

ABSTRACT

Advancements in analytical diagnostic systems for point-of-care (POC) application have gained considerable attention because of their rapid operation at the site required to manage severe diseases, even in a personalized manner. The POC diagnostic devices offer easy operation, fast analytical outcome, and affordable cost, which promote their advanced research and versatile adoptability. Keeping advantages in view, considerable efforts are being made to design and develop smart sensing components such as miniaturized transduction, interdigitated electrodes-based sensing chips, selective detection at low level, portable packaging, and sustainable durability to promote POC diagnostics according to the needs of patient care. Such effective diagnostics systems are in demand, which creates the challenge to make them more efficient in every aspect to generate a desired bio-informatic needed for better health access and management. Keeping advantages and scope in view, this mini review focuses on practical scenarios associated with miniaturized analytical diagnostic devices at POC application for targeted disease diagnostics smartly and efficiently. Moreover, advancements in technologies, such as smartphone-based operation, paper-based sensing assays, and lab-on-a-chip (LOC) which made POC more sensitive, informative, and suitable for major infectious disease diagnosis, are the main focus here. Besides, POC diagnostics based on automated patient sample integration with a sensing platform is continuously improving therapeutics interventions against specific infectious disease. This review also discussed challenges associated with state-of-the-art technology along with future research opportunities to design and develop next generation POC diagnostic systems needed to manage infectious diseases in a personalized manner.


Subject(s)
Point-of-Care Testing , Precision Medicine/methods , Communicable Diseases/diagnosis , Humans , Lab-On-A-Chip Devices , Smartphone
2.
Biosens Bioelectron ; 179: 113074, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1064881

ABSTRACT

On global scale, the current situation of pandemic is symptomatic of increased incidences of contagious diseases caused by pathogens. The faster spread of these diseases, in a moderately short timeframe, is threatening the overall population wellbeing and conceivably the economy. The inadequacy of conventional diagnostic tools in terms of time consuming and complex laboratory-based diagnosis process is a major challenge to medical care. In present era, the development of point-of-care testing (POCT) is in demand for fast detection of infectious diseases along with "on-site" results that are helpful in timely and early action for better treatment. In addition, POCT devices also play a crucial role in preventing the transmission of infectious diseases by offering real-time testing and lab quality microbial diagnosis within minutes. Timely diagnosis and further treatment optimization facilitate the containment of outbreaks of infectious diseases. Presently, efforts are being made to support such POCT by the technological development in the field of internet of medical things (IoMT). The IoMT offers wireless-based operation and connectivity of POCT devices with health expert and medical centre. In this review, the recently developed POC diagnostics integrated or future possibilities of integration with IoMT are discussed with focus on emerging and re-emerging infectious diseases like malaria, dengue fever, influenza A (H1N1), human papilloma virus (HPV), Ebola virus disease (EVD), Zika virus (ZIKV), and coronavirus (COVID-19). The IoMT-assisted POCT systems are capable enough to fill the gap between bioinformatics generation, big rapid analytics, and clinical validation. An optimized IoMT-assisted POCT will be useful in understanding the diseases progression, treatment decision, and evaluation of efficacy of prescribed therapy.


Subject(s)
Biosensing Techniques/instrumentation , Communicable Diseases/diagnosis , Internet of Things , Point-of-Care Testing , Animals , Artificial Intelligence , Biosensing Techniques/methods , COVID-19/diagnosis , Coronavirus Infections/diagnosis , Dengue/diagnosis , Equipment Design , HIV Infections/diagnosis , Hemorrhagic Fever, Ebola/diagnosis , Humans , Influenza, Human/diagnosis , Malaria/diagnosis , Orthomyxoviridae Infections/diagnosis , Zika Virus Infection/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...