Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Anaesthesiol Intensive Ther ; 54(1): 12-17, 2022.
Article in English | MEDLINE | ID: covidwho-1771539

ABSTRACT

BACKGROUND: High-flow nasal cannula (HFNC) therapy is a helpful tool in the treatment of hypoxaemic respiratory failure. However, the clinical parameters predicting the effectiveness of HFNC in coronavirus-19 disease (COVID-19) patients remain unclear. METHODS: Sixteen COVID-19 patients undergoing HFNC in the Asklepios Lung Clinic Munich-Gauting, Germany between 16 March and 3 June 2020 were retrospectively included into the study. Seven patients successfully recovered after HFNC (Group 1), while 9 patients required intubation upon HFNC failure (Group 2). Relevant predictors for an effective HFNC therapy were analysed on day 0 and 4 after HFNC initiation via receiver operating characteristics. RESULTS: The groups did not differ significantly in terms of age, sex, body mass index, and comorbidities. Five patients died in Group 2 upon disease progression and HFNC failure. Group 1 required a lower oxygen supplementation (FiO2 0.46 [0.31-0.54] vs. 0.72 [0.54-0.76], P = 0.022) and displayed a higher PaO2/FiO2 ratio (115 [111-201] vs. 93.3 [67.2-145], P = 0.042) on day 0. In Group 2, fever persisted on day 4 (38.5 [38.0-39.4]°C vs. 36.5 [31.1-37.1]°C, P = 0.010). Serum C-reactive protein (CRP) levels > 108 mg L-1 (day 0) and persistent oxygen saturation < 89% and PaO2/FiO2 ratio < 91 (day 4) were identified as significant predictors for HFNC failure (area under curve 0.929, 0.933, and 0.893). CONCLUSIONS: Elevated oxygen saturation, decreased FiO2 and reduced serum CRP on day 4 significantly predict HFNC effectiveness in COVID-19 patients. Based on these parameters, larger prospective studies are necessary to further investigate the effectiveness of HFNC in the treatment of COVID-19-associated hypoxaemic respiratory failure.


Subject(s)
COVID-19 , COVID-19/therapy , Humans , Oxygen , Oxygen Inhalation Therapy , Prospective Studies , Retrospective Studies
3.
Rofo ; 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1735321

ABSTRACT

PURPOSE: To assess the prognostic power of quantitative analysis of chest CT, laboratory values, and their combination in COVID-19 pneumonia. MATERIALS AND METHODS: Retrospective analysis of patients with PCR-confirmed COVID-19 pneumonia and chest CT performed between March 07 and November 13, 2020. Volume and percentage (PO) of lung opacifications and mean HU of the whole lung were quantified using prototype software. 13 laboratory values were collected. Negative outcome was defined as death, ICU admittance, mechanical ventilation, or extracorporeal membrane oxygenation. Positive outcome was defined as care in the regular ward or discharge. Logistic regression was performed to evaluate the prognostic value of CT parameters and laboratory values. Independent predictors were combined to establish a scoring system for prediction of prognosis. This score was validated on a separate validation cohort. RESULTS: 89 patients were included for model development between March 07 and April 27, 2020 (mean age: 60.3 years). 38 patients experienced a negative outcome. In univariate regression analysis, all quantitative CT parameters as well as C-reactive protein (CRP), relative lymphocyte count (RLC), troponin, and LDH were associated with a negative outcome. In a multivariate regression analysis, PO, CRP, and RLC were independent predictors of a negative outcome. Combination of these three values showed a strong predictive value with a C-index of 0.87. A scoring system was established which categorized patients into 4 groups with a risk of 7 %, 30 %, 67 %, or 100 % for a negative outcome. The validation cohort consisted of 28 patients between May 5 and November 13, 2020. A negative outcome occurred in 6 % of patients with a score of 0, 50 % with a score of 1, and 100 % with a score of 2 or 3. CONCLUSION: The combination of PO, CRP, and RLC showed a high predictive value for a negative outcome. A 4-point scoring system based on these findings allows easy risk stratification in the clinical routine and performed exceptionally in the validation cohort. KEY POINTS: · A high PO is associated with an unfavorable outcome in COVID-19. · PO, CRP, and RLC are independent predictors of an unfavorable outcome, and their combination has strong predictive power. · A 4-point scoring system based on these values allows quick risk stratification in a clinical setting. CITATION FORMAT: · Scharf G, Meiler S, Zeman F et al. Combined Model of Quantitative Evaluation of Chest Computed Tomography and Laboratory Values for Assessing the Prognosis of Coronavirus Disease 2019. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1731-7905.

4.
Diagnostics (Basel) ; 11(10)2021 Oct 11.
Article in English | MEDLINE | ID: covidwho-1480625

ABSTRACT

(1) Background: Chest radiography (CXR) is still a key diagnostic component in the emergency department (ED). Correct interpretation is essential since some pathologies require urgent treatment. This study quantifies potential discrepancies in CXR analysis between radiologists and non-radiology physicians in training with ED experience. (2) Methods: Nine differently qualified physicians (three board-certified radiologists [BCR], three radiology residents [RR], and three non-radiology residents involved in ED [NRR]) evaluated a series of 563 posterior-anterior CXR images by quantifying suspicion for four relevant pathologies: pleural effusion, pneumothorax, pneumonia, and pulmonary nodules. Reading results were noted separately for each hemithorax on a Likert scale (0-4; 0: no suspicion of pathology, 4: safe existence of pathology) adding up to a total of 40,536 reported pathology suspicions. Interrater reliability/correlation and Kruskal-Wallis tests were performed for statistical analysis. (3) Results: While interrater reliability was good among radiologists, major discrepancies between radiologists' and non-radiologists' reading results could be observed in all pathologies. Highest overall interrater agreement was found for pneumothorax detection and lowest agreement in raising suspicion for malignancy suspicious nodules. Pleural effusion and pneumonia were often suspected with indifferent choices (1-3). In terms of pneumothorax detection, all readers mainly decided for a clear option (0 or 4). Interrater reliability was usually higher when evaluating the right hemithorax (all pathologies except pneumothorax). (4) Conclusions: Quantified CXR interrater reliability analysis displays a general uncertainty and strongly depends on medical training. NRR can benefit from radiology reporting in terms of time efficiency and diagnostic accuracy. CXR evaluation of long-time trained ED specialists has not been tested.

5.
Infection ; 50(1): 157-168, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1330430

ABSTRACT

OBJECTIVE: Evaluation of pulmonary function impairment after COVID-19 in persistently symptomatic and asymptomatic patients of all disease severities and characterisation of risk factors. METHODS: Patients with confirmed SARS-CoV-2 infection underwent prospective follow-up with pulmonary function testing and blood gas analysis during steady-state cycle exercise 4 months after acute illness. Pulmonary function impairment (PFI) was defined as reduction below 80% predicted of DLCOcSB, TLC, FVC, or FEV1. Clinical data were analyzed to identify risk factors for impaired pulmonary function. RESULTS: 76 patients were included, hereof 35 outpatients with mild disease and 41 patients hospitalized due to COVID-19. Sixteen patients had critical disease requiring mechanical ventilation, 25 patients had moderate-severe disease. After 4 months, 44 patients reported persisting respiratory symptoms. Significant PFI was prevalent in 40 patients (52.6%) occurring among all disease severities. The most common cause for PFI was reduced DLCOcSB (n = 39, 51.3%), followed by reduced TLC and FVC. The severity of PFI was significantly associated with mechanical ventilation (p < 0.001). Further risk factors for DLCO impairment were COPD (p < 0.001), SARS-CoV-2 antibody-Titer (p = 0.014) and in hospitalized patients CT score. A decrease of paO2 > 3 mmHg during cycle exercise occurred in 1/5 of patients after mild disease course. CONCLUSION: We characterized pulmonary function impairment in asymptomatic and persistently symptomatic patients of different severity groups of COVID-19 and identified further risk factors associated with persistently decreased pulmonary function. Remarkably, gas exchange abnormalities were revealed upon cycle exercise in some patients with mild disease courses and no preexisting pulmonary condition.


Subject(s)
COVID-19 , Humans , Lung , Prospective Studies , SARS-CoV-2 , Severity of Illness Index
6.
Radiol Bras ; 54(4): 211-218, 2021.
Article in English | MEDLINE | ID: covidwho-1323030

ABSTRACT

OBJECTIVE: To evaluate the performance of 1.5 T true fast imaging with steady state precession (TrueFISP) magnetic resonance imaging (MRI) sequences for the detection and characterization of pulmonary abnormalities caused by coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS: In this retrospective single-center study, computed tomography (CT) and MRI scans of 20 patients with COVID-19 pneumonia were evaluated with regard to the distribution, opacity, and appearance of pulmonary lesions, as well as bronchial changes, pleural effusion, and thoracic lymphadenopathy. McNemar's test was used in order to compare the COVID-19-associated alterations seen on CT with those seen on MRI. RESULTS: Ground-glass opacities were better visualized on CT than on MRI (p = 0.031). We found no statistically significant differences between CT and MRI regarding the visualization/characterization of the following: consolidations; interlobular/intralobular septal thickening; the distribution or appearance of pulmonary abnormalities; bronchial pathologies; pleural effusion; and thoracic lymphadenopathy. CONCLUSION: Pulmonary abnormalities caused by COVID-19 pneumonia can be detected on TrueFISP MRI sequences and correspond to the patterns known from CT. Especially during the current pandemic, the portions of the lungs imaged on cardiac or abdominal MRI should be carefully evaluated to promote the identification and isolation of unexpected cases of COVID-19, thereby curbing further spread of the disease.


OBJETIVO: Avaliar o desempenho da ressonância magnética (RM) de 1,5 T true fast imaging with steady state precession (TrueFISP) para detecção e caracterização de anormalidades pulmonares causadas por doença do coronavírus 2019 (COVID-19). MATERIAIS E MÉTODOS: Neste estudo retrospectivo unicêntrico, imagens de tomografia computadorizada (TC) e RM de 20 pacientes com pneumonia COVID-19 foram avaliadas em relação a distribuição, opacidade e forma das lesões pulmonares, anormalidades brônquicas, derrame pleural e linfadenopatia torácica. O teste de McNemar foi usado para comparar os achados associados à COVID-19 na TC e na RM. RESULTADOS: As opacidades em vidro fosco foram mais bem visualizadas na TC do que na RM (p = 0,031). Não foram encontradas diferenças estatisticamente significantes entre TC e RM em relação aos outros aspectos, ou seja, visualização de consolidações e espessamento septal interlobular/intralobular, distribuição ou forma de anormalidades pulmonares, doenças brônquicas, derrame pleural ou linfadenopatia torácica. CONCLUSÃO: As anomalias pulmonares causadas pela pneumonia por COVID-19 podem ser detectadas nas sequências TrueFISP e correspondem aos padrões conhecidos da TC. Especialmente em face da pandemia atual, as porções de imagem dos pulmões na RM cardíaca ou abdominal devem ser cuidadosamente avaliadas para apoiar a identificação e o isolamento de casos inesperados de COVID-19 e, assim, conter a disseminação.

7.
Clin Imaging ; 79: 96-101, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1198667

ABSTRACT

PURPOSE: This study aimed to identify predictive (bio-)markers for COVID-19 severity derived from automated quantitative thin slice low dose volumetric CT analysis, clinical chemistry and lung function testing. METHODS: Seventy-four COVID-19 patients admitted between March 16th and June 3rd 2020 to the Asklepios Lung Clinic Munich-Gauting, Germany, were included in the study. Patients were categorized in a non-severe group including patients hospitalized on general wards only and in a severe group including patients requiring intensive care treatment. Fully automated quantification of CT scans was performed via IMBIO CT Lung Texture analysis™ software. Predictive biomarkers were assessed with receiver-operator-curve and likelihood analysis. RESULTS: Fifty-five patients (44% female) presented with non-severe COVID-19 and 19 patients (32% female) with severe disease. Five fatalities were reported in the severe group. Accurate automated CT analysis was possible with 61 CTs (82%). Disease severity was linked to lower residual normal lung (72.5% vs 87%, p = 0.003), increased ground glass opacities (GGO) (8% vs 5%, p = 0.031) and increased reticular pattern (8% vs 2%, p = 0.025). Disease severity was associated with advanced age (76 vs 59 years, p = 0.001) and elevated serum C-reactive protein (CRP, 92.2 vs 36.3 mg/L, p < 0.001), lactate dehydrogenase (LDH, 485 vs 268 IU/L, p < 0.001) and oxygen supplementation (p < 0.001) upon admission. Predictive risk factors for the development of severe COVID-19 were oxygen supplementation, LDH >313 IU/L, CRP >71 mg/L, <70% normal lung texture, >12.5% GGO and >4.5% reticular pattern. CONCLUSION: Automated low dose CT analysis upon admission might be a useful tool to predict COVID-19 severity in patients.


Subject(s)
COVID-19 , Cone-Beam Computed Tomography , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Tomography, X-Ray Computed
8.
Ann Thorac Surg ; 110(6): e461-e463, 2020 12.
Article in English | MEDLINE | ID: covidwho-549140

ABSTRACT

The novel coronavirus disease 2019 is a highly contagious viral infection caused by the severe acute respiratory syndrome coronavirus 2 virus. Its rapid spread and severe clinical presentation influence patient management in all specialties including thoracic surgery. We report 3 cases of coronavirus disease 2019 occurring in patients shortly after thoracotomy and thoracoscopy procedures, illustrating the imminent threat of severe acute respiratory syndrome coronavirus 2 infection for thoracic surgery patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Cross Infection/diagnosis , Lung Neoplasms/surgery , Pneumonectomy/adverse effects , Pneumonia, Viral/diagnosis , Postoperative Complications/diagnosis , Adenocarcinoma/pathology , Adenocarcinoma/surgery , Aged , COVID-19 , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , Coronavirus Infections/etiology , Coronavirus Infections/therapy , Cross Infection/etiology , Cross Infection/therapy , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/etiology , Pneumonia, Viral/therapy , Postoperative Complications/etiology , Postoperative Complications/therapy , SARS-CoV-2 , Thoracoscopy/adverse effects , Thoracotomy/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL