Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
MMWR Morb Mortal Wkly Rep ; 72(23): 613-620, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20243279

ABSTRACT

Since the Global Polio Eradication Initiative (GPEI) was established in 1988, the number of wild poliovirus (WPV) cases has declined by >99.9%, and WPV serotypes 2 and 3 have been declared eradicated (1). By the end of 2022, WPV type 1 (WPV1) transmission remained endemic only in Afghanistan and Pakistan (2,3). However, during 2021-2022, Malawi and Mozambique reported nine WPV1 cases that were genetically linked to Pakistan (4,5), and circulating vaccine-derived poliovirus (cVDPV) outbreaks were detected in 42 countries (6). cVDPVs are oral poliovirus vaccine-derived viruses that can emerge after prolonged circulation in populations with low immunity allowing reversion to neurovirulence and can cause paralysis. Polioviruses are detected primarily through surveillance for acute flaccid paralysis (AFP), and poliovirus is confirmed through stool specimen testing. Environmental surveillance, the systematic sampling of sewage and testing for the presence of poliovirus, supplements AFP surveillance. Both surveillance systems were affected by the COVID-19 pandemic's effects on public health activities during 2020 (7,8) but improved in 2021 (9). This report updates previous reports (7,9) to describe surveillance performance during 2021-2022 in 34 priority countries.* In 2022, a total of 26 (76.5%) priority countries met the two key AFP surveillance performance indicator targets nationally compared with 24 (70.6%) countries in 2021; however, substantial gaps remain in subnational areas. Environmental surveillance expanded to 725 sites in priority countries, a 31.1% increase from the 553 sites reported in 2021. High-quality surveillance is critical to rapidly detect poliovirus transmission and enable prompt poliovirus outbreak response to stop circulation. Frequent monitoring of surveillance guides improvements to achieve progress toward polio eradication.


Subject(s)
COVID-19 , Enterovirus , Poliomyelitis , Poliovirus , Humans , Pandemics , alpha-Fetoproteins , Disease Eradication , Population Surveillance , Global Health , COVID-19/epidemiology , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliomyelitis/diagnosis , Poliovirus/genetics , Poliovirus Vaccine, Oral , Disease Outbreaks/prevention & control , Immunization Programs
2.
MMWR Morb Mortal Wkly Rep ; 72(14): 366-371, 2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2252235

ABSTRACT

Circulating vaccine-derived poliovirus (cVDPV) outbreaks* can occur when oral poliovirus vaccine (OPV, containing one or more Sabin-strain serotypes 1, 2, and 3) strains undergo prolonged circulation in under-vaccinated populations, resulting in genetically reverted neurovirulent virus (1,2). Following declaration of the eradication of wild poliovirus type 2 in 2015 and the global synchronized switch from trivalent OPV (tOPV, containing Sabin-strain types 1, 2, and 3) to bivalent OPV (bOPV, containing types 1 and 3 only) for routine immunization activities† in April 2016 (3), cVDPV type 2 (cVDPV2) outbreaks have been reported worldwide (4). During 2016-2020, immunization responses to cVDPV2 outbreaks required use of Sabin-strain monovalent OPV2, but new VDPV2 emergences could occur if campaigns did not reach a sufficiently high proportion of children. Novel oral poliovirus vaccine type 2 (nOPV2), a more genetically stable vaccine than Sabin OPV2, was developed to address the risk for reversion to neurovirulence and became available in 2021. Because of the predominant use of nOPV2 during the reporting period, supply replenishment has frequently been insufficient for prompt response campaigns (5). This report describes global cVDPV outbreaks during January 2021-December 2022 (as of February 14, 2023) and updates previous reports (4). During 2021-2022, there were 88 active cVDPV outbreaks, including 76 (86%) caused by cVDPV2. cVDPV outbreaks affected 46 countries, 17 (37%) of which reported their first post-switch cVDPV2 outbreak. The total number of paralytic cVDPV cases during 2020-2022 decreased by 36%, from 1,117 to 715; however, the proportion of all cVDPV cases that were caused by cVDPV type 1 (cVDPV1) increased from 3% in 2020 to 18% in 2022, including the occurrence of cocirculating cVDPV1 and cVDPV2 outbreaks in two countries. The increased proportion of cVDPV1 cases follows a substantial decrease in global routine immunization coverage and suspension of preventive immunization campaigns during the COVID-19 pandemic (2020-2022) (6); outbreak responses in some countries were also suboptimal. Improving routine immunization coverage, strengthening poliovirus surveillance, and conducting timely and high-quality supplementary immunization activities (SIAs) in response to cVDPV outbreaks are needed to interrupt cVDPV transmission and reach the goal of no cVDPV isolations in 2024.


Subject(s)
Disease Outbreaks , Poliomyelitis , Poliovirus Vaccine, Oral , Child , Humans , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus/genetics , Poliovirus Vaccine, Oral/adverse effects
3.
Indian J Med Res ; 155(1): 129-135, 2022 01.
Article in English | MEDLINE | ID: covidwho-1924409

ABSTRACT

Background & objectives: Polio, measles, rubella, influenza and rotavirus surveillance programmes are of great public health importance globally. Virus isolation using cell culture is an integral part of such programmes. Possibility of unintended isolation of SARS-CoV-2 from clinical specimens processed in biosafety level-2 (BSL-2) laboratories during the above-mentioned surveillance programmes, cannot be ruled out. The present study was conducted to assess the susceptibility of different cell lines to SARS-CoV-2 used in these programmes. Methods: Replication of SARS-CoV-2 was studied in RD and L20B, Vero/hSLAM, MA-104 and Madin-Darby Canine Kidney (MDCK) cell lines, used for the isolation of polio, measles, rubella, rotavirus and influenza viruses, respectively. SARS-CoV-2 at 0.01 multiplicity of infection was inoculated and the viral growth was assessed by observation of cytopathic effects followed by real-time reverse transcription-polymerase chain reaction (qRT-PCR). Vero CCL-81 cell line was used as a positive control. Results: SARS-CoV-2 replicated in Vero/hSLAM, and MA-104 cells, whereas it did not replicate in L20B, RD and MDCK cells. Vero/hSLAM, and Vero CCL-81 showed rounding, degeneration and detachment of cells; MA-104 cells also showed syncytia formation. In qRT-PCR, Vero/hSLAM and MA-104 showed 106 and Vero CCL-81 showed 107 viral RNA copies per µl. The 50 per cent tissue culture infectious dose titres of Vero/hSLAM, MA-104 and Vero CCL-81 were 105.54, 105.29 and 106.45/ml, respectively. Interpretation & conclusions: Replication of SARS-CoV-2 in Vero/hSLAM and MA-104 underscores the possibility of its unintended isolation during surveillance procedures aiming to isolate measles, rubella and rotavirus. This could result in accidental exposure to high titres of SARS-CoV-2, which can result in laboratory acquired infections and community risk, highlighting the need for revisiting biosafety measures in public health laboratories.


Subject(s)
COVID-19 , Measles , Poliomyelitis , Rubella , Animals , Cell Line , Chlorocebus aethiops , Containment of Biohazards , Dogs , Public Health Surveillance , SARS-CoV-2 , Vero Cells
4.
MMWR Morb Mortal Wkly Rep ; 71(15): 538-544, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1789730

ABSTRACT

Since the Global Polio Eradication Initiative (GPEI) was established in 1988, the number of reported poliomyelitis cases worldwide has declined by approximately 99.99%. By the end of 2021, wild poliovirus (WPV) remained endemic in only two countries (Pakistan and Afghanistan). However, a WPV type 1 (WPV1) case with paralysis onset in 2021, was reported by Malawi a year after the World Health Organization (WHO) African Region (AFR) was certified as WPV-free and circulating vaccine-derived poliovirus (cVDPV) cases were reported from 31 countries during 2020-2021 (1,2). cVDPVs are oral poliovirus vaccine-derived viruses that can emerge after prolonged circulation in populations with low immunity and cause paralysis. The primary means of detecting poliovirus transmission is through surveillance for acute flaccid paralysis (AFP) among persons aged <15 years, with confirmation through stool specimen testing by WHO-accredited laboratories, supplemented by systematic sampling of sewage and testing for the presence of poliovirus (environmental surveillance). The COVID-19 pandemic caused disruptions in polio vaccination and surveillance activities across WHO regions in 2020; during January-September 2020, the number of reported cases of AFP declined and the interval between stool collection and receipt by laboratories increased compared with the same period in 2019 (3). This report summarizes surveillance performance indicators for 2020 and 2021 in 43 priority countries* and updates previous reports (4). In 2021, a total of 32 (74%) priority countries† met two key surveillance performance indicator targets nationally, an improvement from 2020 when only 23 (53%) met both targets; however, substantial national and subnational gaps persist. High-performing poliovirus surveillance is critical to tracking poliovirus transmission. Frequent monitoring of surveillance indicators could help identify gaps, guide improvements, and enhance the overall sensitivity and timelines of poliovirus detection to successfully achieve polio eradication.


Subject(s)
COVID-19 , Poliomyelitis , Poliovirus , Disease Eradication , Global Health , Humans , Immunization Programs , Pandemics , Paralysis/epidemiology , Poliomyelitis/diagnosis , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral , Population Surveillance , alpha-Fetoproteins
5.
MMWR Morb Mortal Wkly Rep ; 70(18): 667-673, 2021 May 07.
Article in English | MEDLINE | ID: covidwho-1218743

ABSTRACT

When the Global Polio Eradication Initiative (GPEI) was established in 1988, an estimated 350,000 poliomyelitis cases were reported worldwide. In 2020, 140 wild poliovirus (WPV) cases were confirmed, representing a 99.99% reduction since 1988. WPV type 1 transmission remains endemic in only two countries (Pakistan and Afghanistan), but outbreaks of circulating vaccine-derived poliovirus (cVDPV) occurred in 33 countries during 2019-2020 (1,2). Poliovirus transmission is detected primarily through syndromic surveillance for acute flaccid paralysis (AFP) among children aged <15 years, with confirmation by laboratory testing of stool specimens. Environmental surveillance supplements AFP surveillance and plays an increasingly important role in detecting poliovirus transmission. Within 2 weeks of COVID-19 being declared a global pandemic (3), GPEI recommended continuing surveillance activities with caution and paused all polio supplementary immunization activities (4). This report summarizes surveillance performance indicators for 2019 and 2020 in 42 priority countries at high risk for poliovirus transmission and updates previous reports (5). In 2020, 48% of priority countries* in the African Region, 90% in the Eastern Mediterranean Region, and 40% in other regions met AFP surveillance performance indicators nationally. The number of priority countries rose from 40 in 2019 to 42 in 2020.† Analysis of 2019-2020 AFP surveillance data from 42 countries at high risk for poliovirus transmission indicates that national and subnational nonpolio AFP rates and stool specimen adequacy declined in many priority countries, particularly in the African Region, suggesting a decline in surveillance sensitivity and quality. The findings in this report can be used to guide improvements to restore a sensitive surveillance system that can track poliovirus transmission and provide evidence of interruption of transmission.


Subject(s)
Disease Eradication , Global Health/statistics & numerical data , Poliomyelitis/prevention & control , Population Surveillance , Humans , Poliomyelitis/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL