Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Baruch, Joaquin, Rojek, Amanda, Kartsonaki, Christiana, Vijayaraghavan, Bharath K. T.; Gonçalves, Bronner P.; Pritchard, Mark G.; Merson, Laura, Dunning, Jake, Hall, Matthew, Sigfrid, Louise, Citarella, Barbara W.; Murthy, Srinivas, Yeabah, Trokon O.; Olliaro, Piero, Abbas, Ali, Abdukahil, Sheryl Ann, Abdulkadir, Nurul Najmee, Abe, Ryuzo, Abel, Laurent, Absil, Lara, Acharya, Subhash, Acker, Andrew, Adam, Elisabeth, Adrião, Diana, Al Ageel, Saleh, Ahmed, Shakeel, Ainscough, Kate, Airlangga, Eka, Aisa, Tharwat, Hssain, Ali Ait, Tamlihat, Younes Ait, Akimoto, Takako, Akmal, Ernita, Al Qasim, Eman, Alalqam, Razi, Alberti, Angela, Al‐dabbous, Tala, Alegesan, Senthilkumar, Alegre, Cynthia, Alessi, Marta, Alex, Beatrice, Alexandre, Kévin, Al‐Fares, Abdulrahman, Alfoudri, Huda, Ali, Imran, Ali, Adam, Shah, Naseem Ali, Alidjnou, Kazali Enagnon, Aliudin, Jeffrey, Alkhafajee, Qabas, Allavena, Clotilde, Allou, Nathalie, Altaf, Aneela, Alves, João, Alves, Rita, Alves, João Melo, Amaral, Maria, Amira, Nur, Ampaw, Phoebe, Andini, Roberto, Andréjak, Claire, Angheben, Andrea, Angoulvant, François, Ansart, Séverine, Anthonidass, Sivanesen, Antonelli, Massimo, de Brito, Carlos Alexandre Antunes, Apriyana, Ardiyan, Arabi, Yaseen, Aragao, Irene, Araujo, Carolline, Arcadipane, Antonio, Archambault, Patrick, Arenz, Lukas, Arlet, Jean‐Benoît, Arora, Lovkesh, Arora, Rakesh, Artaud‐Macari, Elise, Aryal, Diptesh, Asensio, Angel, Ashraf, Muhammad, Asif, Namra, Asim, Mohammad, Assie, Jean Baptiste, Asyraf, Amirul, Atique, Anika, Attanyake, A. M. Udara Lakshan, Auchabie, Johann, Aumaitre, Hugues, Auvet, Adrien, Axelsen, Eyvind W.; Azemar, Laurène, Azoulay, Cecile, Bach, Benjamin, Bachelet, Delphine, Badr, Claudine, Bævre‐Jensen, Roar, Baig, Nadia, Baillie, J. Kenneth, Baird, J. Kevin, Bak, Erica, Bakakos, Agamemnon, Bakar, Nazreen Abu, Bal, Andriy, Balakrishnan, Mohanaprasanth, Balan, Valeria, Bani‐Sadr, Firouzé, Barbalho, Renata, Barbosa, Nicholas Yuri, Barclay, Wendy S.; Barnett, Saef Umar, Barnikel, Michaela, Barrasa, Helena, Barrelet, Audrey, Barrigoto, Cleide, Bartoli, Marie, Baruch, Joaquín, Bashir, Mustehan, Basmaci, Romain, Basri, Muhammad Fadhli Hassin, Battaglini, Denise, Bauer, Jules, Rincon, Diego Fernando Bautista, Dow, Denisse Bazan, Beane, Abigail, Bedossa, Alexandra, Bee, Ker Hong, Begum, Husna, Behilill, Sylvie, Beishuizen, Albertus, Beljantsev, Aleksandr, Bellemare, David, Beltrame, Anna, Beltrão, Beatriz Amorim, Beluze, Marine, Benech, Nicolas, Benjiman, Lionel Eric, Benkerrou, Dehbia, Bennett, Suzanne, Bento, Luís, Berdal, Jan‐Erik, Bergeaud, Delphine, Bergin, Hazel, Sobrino, José Luis Bernal, Bertoli, Giulia, Bertolino, Lorenzo, Bessis, Simon, Bevilcaqua, Sybille, Bezulier, Karine, Bhatt, Amar, Bhavsar, Krishna, Bianco, Claudia, Bidin, Farah Nadiah, Singh, Moirangthem Bikram, Humaid, Felwa Bin, Kamarudin, Mohd Nazlin Bin, Bissuel, François, Bitker, Laurent, Bitton, Jonathan, Blanco‐Schweizer, Pablo, Blier, Catherine, Bloos, Frank, Blot, Mathieu, Boccia, Filomena, Bodenes, Laetitia, Bogaarts, Alice, Bogaert, Debby, Boivin, Anne‐Hélène, Bolze, Pierre‐Adrien, Bompart, François, Bonfasius, Aurelius, Borges, Diogo, Borie, Raphaël, Bosse, Hans Martin, Botelho‐Nevers, Elisabeth, Bouadma, Lila, Bouchaud, Olivier, Bouchez, Sabelline, Bouhmani, Dounia, Bouhour, Damien, Bouiller, Kévin, Bouillet, Laurence, Bouisse, Camile, Boureau, Anne‐Sophie, Bourke, John, Bouscambert, Maude, Bousquet, Aurore, Bouziotis, Jason, Boxma, Bianca, Boyer‐Besseyre, Marielle, Boylan, Maria, Bozza, Fernando Augusto, Braconnier, Axelle, Braga, Cynthia, Brandenburger, Timo, Monteiro, Filipa Brás, Brazzi, Luca, Breen, Patrick, Breen, Dorothy, Breen, Patrick, Brickell, Kathy, Browne, Shaunagh, Browne, Alex, Brozzi, Nicolas, Brunvoll, Sonja Hjellegjerde, Brusse‐Keizer, Marjolein, Buchtele, Nina, Buesaquillo, Christian, Bugaeva, Polina, Buisson, Marielle, Buonsenso, Danilo, Burhan, Erlina, Burrell, Aidan, Bustos, Ingrid G.; Butnaru, Denis, Cabie, André, Cabral, Susana, Caceres, Eder, Cadoz, Cyril, Calligy, Kate, Calvache, Jose Andres, Camões, João, Campana, Valentine, Campbell, Paul, Campisi, Josie, Canepa, Cecilia, Cantero, Mireia, Caraux‐Paz, Pauline, Cárcel, Sheila, Cardellino, Chiara Simona, Cardoso, Sofia, Cardoso, Filipe, Cardoso, Filipa, Cardoso, Nelson, Carelli, Simone, Carlier, Nicolas, Carmoi, Thierry, Carney, Gayle, Carqueja, Inês, Carret, Marie‐Christine, Carrier, François Martin, Carroll, Ida, Carson, Gail, Casanova, Maire‐Laure, Cascão, Mariana, Casey, Siobhan, Casimiro, José, Cassandra, Bailey, Castañeda, Silvia, Castanheira, Nidyanara, Castor‐Alexandre, Guylaine, Castrillón, Henry, Castro, Ivo, Catarino, Ana, Catherine, François‐Xavier, Cattaneo, Paolo, Cavalin, Roberta, Cavalli, Giulio Giovanni, Cavayas, Alexandros, Ceccato, Adrian, Cervantes‐Gonzalez, Minerva, Chair, Anissa, Chakveatze, Catherine, Chan, Adrienne, Chand, Meera, Auger, Christelle Chantalat, Chapplain, Jean‐Marc, Chas, Julie, Chatterjee, Allegra, Chaudry, Mobin, Iñiguez, Jonathan Samuel Chávez, Chen, Anjellica, Chen, Yih‐Sharng, Cheng, Matthew Pellan, Cheret, Antoine, Chiarabini, Thibault, Chica, Julian, Chidambaram, Suresh Kumar, Tho, Leong Chin, Chirouze, Catherine, Chiumello, Davide, Cho, Sung‐Min, Cholley, Bernard, Chopin, Marie‐Charlotte, Chow, Ting Soo, Chow, Yock Ping, Chua, Jonathan, Chua, Hiu Jian, Cidade, Jose Pedro, Herreros, José Miguel Cisneros, Citarella, Barbara Wanjiru, Ciullo, Anna, Clarke, Jennifer, Clarke, Emma, Granado, Rolando Claure‐Del, Clohisey, Sara, Cobb, Perren J.; Codan, Cassidy, Cody, Caitriona, Coelho, Alexandra, Coles, Megan, Colin, Gwenhaël, Collins, Michael, Colombo, Sebastiano Maria, Combs, Pamela, Connor, Marie, Conrad, Anne, Contreras, Sofía, Conway, Elaine, Cooke, Graham S.; Copland, Mary, Cordel, Hugues, Corley, Amanda, Cornelis, Sabine, Cornet, Alexander Daniel, Corpuz, Arianne Joy, Cortegiani, Andrea, Corvaisier, Grégory, Costigan, Emma, Couffignal, Camille, Couffin‐Cadiergues, Sandrine, Courtois, Roxane, Cousse, Stéphanie, Cregan, Rachel, Croonen, Sabine, Crowl, Gloria, Crump, Jonathan, Cruz, Claudina, Bermúdez, Juan Luis Cruz, Rojo, Jaime Cruz, Csete, Marc, Cullen, Ailbhe, Cummings, Matthew, Curley, Gerard, Curlier, Elodie, Curran, Colleen, Custodio, Paula, da Silva Filipe, Ana, Da Silveira, Charlene, Dabaliz, Al‐Awwab, Dagens, Andrew, Dahl, John Arne, Dahly, Darren, Dalton, Heidi, Dalton, Jo, Daly, Seamus, Daneman, Nick, Daniel, Corinne, Dankwa, Emmanuelle A.; Dantas, Jorge, D'Aragon, Frédérick, de Loughry, Gillian, de Mendoza, Diego, De Montmollin, Etienne, de Oliveira França, Rafael Freitas, de Pinho Oliveira, Ana Isabel, De Rosa, Rosanna, De Rose, Cristina, de Silva, Thushan, de Vries, Peter, Deacon, Jillian, Dean, David, Debard, Alexa, Debray, Marie‐Pierre, DeCastro, Nathalie, Dechert, William, Deconninck, Lauren, Decours, Romain, Defous, Eve, Delacroix, Isabelle, Delaveuve, Eric, Delavigne, Karen, Delfos, Nathalie M.; Deligiannis, Ionna, Dell'Amore, Andrea, Delmas, Christelle, Delobel, Pierre, Delsing, Corine, Demonchy, Elisa, Denis, Emmanuelle, Deplanque, Dominique, Depuydt, Pieter, Desai, Mehul, Descamps, Diane, Desvallées, Mathilde, Dewayanti, Santi, Dhanger, Pathik, Diallo, Alpha, Diamantis, Sylvain, Dias, André, Diaz, Juan Jose, Diaz, Priscila, Diaz, Rodrigo, Didier, Kévin, Diehl, Jean‐Luc, Dieperink, Wim, Dimet, Jérôme, Dinot, Vincent, Diop, Fara, Diouf, Alphonsine, Dishon, Yael, Djossou, Félix, Docherty, Annemarie B.; Doherty, Helen, Dondorp, Arjen M.; Donnelly, Maria, Donnelly, Christl A.; Donohue, Sean, Donohue, Yoann, Donohue, Chloe, Doran, Peter, Dorival, Céline, D'Ortenzio, Eric, Douglas, James Joshua, Douma, Renee, Dournon, Nathalie, Downer, Triona, Downey, Joanne, Downing, Mark, Drake, Tom, Driscoll, Aoife, Dryden, Murray, Fonseca, Claudio Duarte, Dubee, Vincent, Dubos, François, Ducancelle, Alexandre, Duculan, Toni, Dudman, Susanne, Duggal, Abhijit, Dunand, Paul, Dunning, Jake, Duplaix, Mathilde, Durante‐Mangoni, Emanuele, Durham, Lucian, Dussol, Bertrand, Duthoit, Juliette, Duval, Xavier, Dyrhol‐Riise, Anne Margarita, Ean, Sim Choon, Echeverria‐Villalobos, Marco, Egan, Siobhan, Eggesbø, Linn Margrete, Eira, Carla, El Sanharawi, Mohammed, Elapavaluru, Subbarao, Elharrar, Brigitte, Ellerbroek, Jacobien, Ellingjord‐Dale, Merete, Eloy, Philippine, Elshazly, Tarek, Elyazar, Iqbal, Enderle, Isabelle, Endo, Tomoyuki, Eng, Chan Chee, Engelmann, Ilka, Enouf, Vincent, Epaulard, Olivier, Escher, Martina, Esperatti, Mariano, Esperou, Hélène, Esposito‐Farese, Marina, Estevão, João, Etienne, Manuel, Ettalhaoui, Nadia, Everding, Anna Greti, Evers, Mirjam, Fabre, Marc, Fabre, Isabelle, Faheem, Amna, Fahy, Arabella, Fairfield, Cameron J.; Fakar, Zul, Fareed, Komal, Faria, Pedro, Farooq, Ahmed, Fateena, Hanan, Fatoni, Arie Zainul, Faure, Karine, Favory, Raphaël, Fayed, Mohamed, Feely, Niamh, Feeney, Laura, Fernandes, Jorge, Fernandes, Marília Andreia, Fernandes, Susana, Ferrand, François‐Xavier, Devouge, Eglantine Ferrand, Ferrão, Joana, Ferraz, Mário, Ferreira, Sílvia, Ferreira, Isabel, Ferreira, Benigno, Ferrer‐Roca, Ricard, Ferriere, Nicolas, Ficko, Céline, Figueiredo‐Mello, Claudia, Finlayson, William, Fiorda, Juan, Flament, Thomas, Flateau, Clara, Fletcher, Tom, Florio, Letizia Lucia, Flynn, Deirdre, Foley, Claire, Foley, Jean, Fomin, Victor, Fonseca, Tatiana, Fontela, Patricia, Forsyth, Simon, Foster, Denise, Foti, Giuseppe, Fourn, Erwan, Fowler, Robert A.; Fraher, Marianne, Franch‐Llasat, Diego, Fraser, John F.; Fraser, Christophe, Freire, Marcela Vieira, Ribeiro, Ana Freitas, Friedrich, Caren, Fry, Stéphanie, Fuentes, Nora, Fukuda, Masahiro, Argin, G.; Gaborieau, Valérie, Gaci, Rostane, Gagliardi, Massimo, Gagnard, Jean‐Charles, Gagneux‐Brunon, Amandine, Gaião, Sérgio, Skeie, Linda Gail, Gallagher, Phil, Gamble, Carrol, Gani, Yasmin, Garan, Arthur, Garcia, Rebekha, Barrio, Noelia García, Garcia‐Diaz, Julia, Garcia‐Gallo, Esteban, Garimella, Navya, Garot, Denis, Garrait, Valérie, Gauli, Basanta, Gault, Nathalie, Gavin, Aisling, Gavrylov, Anatoliy, Gaymard, Alexandre, Gebauer, Johannes, Geraud, Eva, Morlaes, Louis Gerbaud, Germano, Nuno, Ghisulal, Praveen Kumar, Ghosn, Jade, Giani, Marco, Gibson, Jess, Gigante, Tristan, Gilg, Morgane, Gilroy, Elaine, Giordano, Guillermo, Girvan, Michelle, Gissot, Valérie, Glikman, Daniel, Glybochko, Petr, Gnall, Eric, Goco, Geraldine, Goehringer, François, Goepel, Siri, Goffard, Jean‐Christophe, Goh, Jin Yi, Golob, Jonathan, Gomez, Kyle, Gómez‐Junyent, Joan, Gominet, Marie, Gonçalves, Bronner P.; Gonzalez, Alicia, Gordon, Patricia, Gorenne, Isabelle, Goubert, Laure, Goujard, Cécile, Goulenok, Tiphaine, Grable, Margarite, Graf, Jeronimo, Grandin, Edward Wilson, Granier, Pascal, Grasselli, Giacomo, Green, Christopher A.; Greene, Courtney, Greenhalf, William, Greffe, Segolène, Grieco, Domenico Luca, Griffee, Matthew, Griffiths, Fiona, Grigoras, Ioana, Groenendijk, Albert, Lordemann, Anja Grosse, Gruner, Heidi, Gu, Yusing, Guedj, Jérémie, Guego, Martin, Guellec, Dewi, Guerguerian, Anne‐Marie, Guerreiro, Daniela, Guery, Romain, Guillaumot, Anne, Guilleminault, Laurent, Guimarães de Castro, Maisa, Guimard, Thomas, Haalboom, Marieke, Haber, Daniel, Habraken, Hannah, Hachemi, Ali, Hackmann, Amy, Hadri, Nadir, Haidri, Fakhir, Hakak, Sheeba, Hall, Adam, Hall, Matthew, Halpin, Sophie, Hameed, Jawad, Hamer, Ansley, Hamers, Raph L.; Hamidfar, Rebecca, Hammarström, Bato, Hammond, Terese, Han, Lim Yuen, Haniffa, Rashan, Hao, Kok Wei, Hardwick, Hayley, Harrison, Ewen M.; Harrison, Janet, Harrison, Samuel Bernard Ekow, Hartman, Alan, Hasan, Mohd Shahnaz, Hashmi, Junaid, Hayat, Muhammad, Hayes, Ailbhe, Hays, Leanne, Heerman, Jan, Heggelund, Lars, Hendry, Ross, Hennessy, Martina, Henriquez‐Trujillo, Aquiles, Hentzien, Maxime, Hernandez‐Montfort, Jaime, Hershey, Andrew, Hesstvedt, Liv, Hidayah, Astarini, Higgins, Eibhilin, Higgins, Dawn, Higgins, Rupert, Hinchion, Rita, Hinton, Samuel, Hiraiwa, Hiroaki, Hirkani, Haider, Hitoto, Hikombo, Ho, Yi Bin, Ho, Antonia, Hoctin, Alexandre, Hoffmann, Isabelle, Hoh, Wei Han, Hoiting, Oscar, Holt, Rebecca, Holter, Jan Cato, Horby, Peter, Horcajada, Juan Pablo, Hoshino, Koji, Houas, Ikram, Hough, Catherine L.; Houltham, Stuart, Hsu, Jimmy Ming‐Yang, Hulot, Jean‐Sébastien, Huo, Stella, Hurd, Abby, Hussain, Iqbal, Ijaz, Samreen, Illes, Hajnal‐Gabriela, Imbert, Patrick, Imran, Mohammad, Sikander, Rana Imran, Imtiaz, Aftab, Inácio, Hugo, Dominguez, Carmen Infante, Ing, Yun Sii, Iosifidis, Elias, Ippolito, Mariachiara, Isgett, Sarah, Isidoro, Tiago, Ismail, Nadiah, Isnard, Margaux, Istre, Mette Stausland, Itai, Junji, Ivulich, Daniel, Jaafar, Danielle, Jaafoura, Salma, Jabot, Julien, Jackson, Clare, Jamieson, Nina, Jaquet, Pierre, Jaud‐Fischer, Coline, Jaureguiberry, Stéphane, Jaworsky, Denise, Jego, Florence, Jelani, Anilawati Mat, Jenum, Synne, Jimbo‐Sotomayor, Ruth, Joe, Ong Yiaw, Jorge García, Ruth N.; Jørgensen, Silje Bakken, Joseph, Cédric, Joseph, Mark, Joshi, Swosti, Jourdain, Mercé, Jouvet, Philippe, Jung, Hanna, Jung, Anna, Juzar, Dafsah, Kafif, Ouifiya, Kaguelidou, Florentia, Kaisbain, Neerusha, Kaleesvran, Thavamany, Kali, Sabina, Kalicinska, Alina, Kalleberg, Karl Trygve, Kalomoiri, Smaragdi, Kamaluddin, Muhammad Aisar Ayadi, Kamaruddin, Zul Amali Che, Kamarudin, Nadiah, Kamineni, Kavita, Kandamby, Darshana Hewa, Kandel, Chris, Kang, Kong Yeow, Kanwal, Darakhshan, Karpayah, Pratap, Kartsonaki, Christiana, Kasugai, Daisuke, Kataria, Anant, Katz, Kevin, Kaur, Aasmine, Kay, Christy, Keane, Hannah, Keating, Seán, Kedia, Pulak, Kelly, Claire, Kelly, Yvelynne, Kelly, Andrea, Kelly, Niamh, Kelly, Aoife, Kelly, Sadie, Kelsey, Maeve, Kennedy, Ryan, Kennon, Kalynn, Kernan, Maeve, Kerroumi, Younes, Keshav, Sharma, Khalid, Imrana, Khalid, Osama, Khalil, Antoine, Khan, Coralie, Khan, Irfan, Khan, Quratul Ain, Khanal, Sushil, Khatak, Abid, Khawaja, Amin, Kherajani, Krish, Kho, Michelle E.; Khoo, Ryan, Khoo, Denisa, Khoo, Saye, Khoso, Nasir, Kiat, Khor How, Kida, Yuri, Kiiza, Peter, Granerud, Beathe Kiland, Kildal, Anders Benjamin, Kim, Jae Burm, Kimmoun, Antoine, Kindgen‐Milles, Detlef, King, Alexander, Kitamura, Nobuya, Kjetland, Eyrun Floerecke Kjetland, Klenerman, Paul, Klont, Rob, Bekken, Gry Kloumann, Knight, Stephen R.; Kobbe, Robin, Kodippily, Chamira, Vasconcelos, Malte Kohns, Koirala, Sabin, Komatsu, Mamoru, Kosgei, Caroline, Kpangon, Arsène, Krawczyk, Karolina, Krishnan, Vinothini, Krishnan, Sudhir, Kruglova, Oksana, Kumar, Ganesh, Kumar, Deepali, Kumar, Mukesh, Vecham, Pavan Kumar, Kuriakose, Dinesh, Kurtzman, Ethan, Kutsogiannis, Demetrios, Kutsyna, Galyna, Kyriakoulis, Konstantinos, Lachatre, Marie, Lacoste, Marie, Laffey, John G.; Lagrange, Marie, Laine, Fabrice, Lairez, Olivier, Lakhey, Sanjay, Lalueza, Antonio, Lambert, Marc, Lamontagne, François, Langelot‐Richard, Marie, Langlois, Vincent, Lantang, Eka Yudha, Lanza, Marina, Laouénan, Cédric, Laribi, Samira, Lariviere, Delphine, Lasry, Stéphane, Lath, Sakshi, Latif, Naveed, Launay, Odile, Laureillard, Didier, Lavie‐Badie, Yoan, Law, Andy, Lawrence, Teresa, Lawrence, Cassie, Le, Minh, Le Bihan, Clément, Le Bris, Cyril, Le Falher, Georges, Le Fevre, Lucie, Le Hingrat, Quentin, Le Maréchal, Marion, Le Mestre, Soizic, Le Moal, Gwenaël, Le Moing, Vincent, Le Nagard, Hervé, Le Turnier, Paul, Leal, Ema, Santos, Marta Leal, Lee, Heng Gee, Lee, Biing Horng, Lee, Yi Lin, Lee, Todd C.; Lee, James, Lee, Jennifer, Lee, Su Hwan, Leeming, Gary, Lefebvre, Laurent, Lefebvre, Bénédicte, Lefèvre, Benjamin, LeGac, Sylvie, Lelievre, Jean‐Daniel, Lellouche, François, Lemaignen, Adrien, Lemee, Véronique, Lemeur, Anthony, Lemmink, Gretchen, Lene, Ha Sha, Lennon, Jenny, León, Rafael, Leone, Marc, Leone, Michela, Lepiller, Quentin, Lescure, François‐Xavier, Lesens, Olivier, Lesouhaitier, Mathieu, Lester‐Grant, Amy, Levy, Yves, Levy, Bruno, Levy‐Marchal, Claire, Lewandowska, Katarzyna, L'Her, Erwan, Bassi, Gianluigi Li, Liang, Janet, Liaquat, Ali, Liegeon, Geoffrey, Lim, Kah Chuan, Lim, Wei Shen, Lima, Chantre, Lina, Lim, Lina, Bruno, Lind, Andreas, Lingad, Maja Katherine, Lingas, Guillaume, Lion‐Daolio, Sylvie, Lissauer, Samantha, Liu, Keibun, Livrozet, Marine, Lizotte, Patricia, Loforte, Antonio, Lolong, Navy, Loon, Leong Chee, Lopes, Diogo, Lopez‐Colon, Dalia, Lopez‐Revilla, Jose W.; Loschner, Anthony L.; Loubet, Paul, Loufti, Bouchra, Louis, Guillame, Lourenco, Silvia, Lovelace‐Macon, Lara, Low, Lee Lee, Lowik, Marije, Loy, Jia Shyi, Lucet, Jean Christophe, Bermejo, Carlos Lumbreras, Luna, Carlos M.; Lungu, Olguta, Luong, Liem, Luque, Nestor, Luton, Dominique, Lwin, Nilar, Lyons, Ruth, Maasikas, Olavi, Mabiala, Oryane, Machado, Moïse, Macheda, Gabriel, Madiha, Hashmi, Maestro de la Calle, Guillermo, Mahieu, Rafael, Mahy, Sophie, Maia, Ana Raquel, Maier, Lars S.; Maillet, Mylène, Maitre, Thomas, Malfertheiner, Maximilian, Malik, Nadia, Mallon, Paddy, Maltez, Fernando, Malvy, Denis, Manda, Victoria, Mandelbrot, Laurent, Manetta, Frank, Mankikian, Julie, Manning, Edmund, Manuel, Aldric, Sant'Ana Malaque, Ceila Maria, Marino, Flávio, Marino, Daniel, Markowicz, Samuel, Maroun Eid, Charbel, Marques, Ana, Marquis, Catherine, Marsh, Brian, Marsh, Laura, Marshal, Megan, Marshall, John, Martelli, Celina Turchi, Martin, Dori‐Ann, Martin, Emily, Martin‐Blondel, Guillaume, Martin‐Loeches, Ignacio, Martinot, Martin, Martin‐Quiros, Alejandro, Martins, João, Martins, Ana, Martins, Nuno, Rego, Caroline Martins, Martucci, Gennaro, Martynenko, Olga, Marwali, Eva Miranda, Marzukie, Marsilla, Maslove, David, Mason, Sabina, Masood, Sobia, Nor, Basri Mat, Matan, Moshe, Mathew, Meghena, Mathieu, Daniel, Mattei, Mathieu, Matulevics, Romans, Maulin, Laurence, Maxwell, Michael, Maynar, Javier, Mazzoni, Thierry, Evoy, Natalie Mc, Sweeney, Lisa Mc, McArthur, Colin, McArthur, Colin, McCarthy, Anne, McCarthy, Aine, McCloskey, Colin, McConnochie, Rachael, McDermott, Sherry, McDonald, Sarah E.; McElroy, Aine, McElwee, Samuel, McEneany, Victoria, McGeer, Allison, McKay, Chris, McKeown, Johnny, McLean, Kenneth A.; McNally, Paul, McNicholas, Bairbre, McPartlan, Elaine, Meaney, Edel, Mear‐Passard, Cécile, Mechlin, Maggie, Meher, Maqsood, Mehkri, Omar, Mele, Ferruccio, Melo, Luis, Memon, Kashif, Mendes, Joao Joao, Menkiti, Ogechukwu, Menon, Kusum, Mentré, France, Mentzer, Alexander J.; Mercier, Noémie, Mercier, Emmanuelle, Merckx, Antoine, Mergeay‐Fabre, Mayka, Mergler, Blake, Merson, Laura, Mesquita, António, Meta, Roberta, Metwally, Osama, Meybeck, Agnès, Meyer, Dan, Meynert, Alison M.; Meysonnier, Vanina, Meziane, Amina, Mezidi, Mehdi, Michelanglei, Céline, Michelet, Isabelle, Mihelis, Efstathia, Mihnovit, Vladislav, Miranda‐Maldonado, Hugo, Misnan, Nor Arisah, Mohamed, Tahira Jamal, Mohamed, Nik Nur Eliza, Moin, Asma, Molina, David, Molinos, Elena, Molloy, Brenda, Mone, Mary, Monteiro, Agostinho, Montes, Claudia, Montrucchio, Giorgia, Moore, Shona C.; Moore, Sarah, Cely, Lina Morales, Moro, Lucia, Morton, Ben, Motherway, Catherine, Motos, Ana, Mouquet, Hugo, Perrot, Clara Mouton, Moyet, Julien, Mudara, Caroline, Mufti, Aisha Kalsoom, Muh, Ng Yong, Muhamad, Dzawani, Mullaert, Jimmy, Müller, Fredrik, Müller, Karl Erik, Munblit, Daniel, Muneeb, Syed, Munir, Nadeem, Munshi, Laveena, Murphy, Aisling, Murphy, Lorna, Murphy, Aisling, Murris, Marlène, Murthy, Srinivas, Musaab, Himed, Muvindi, Himasha, Muyandy, Gugapriyaa, Myrodia, Dimitra Melia, Mohd‐Hanafiah, Farah Nadia, Nagpal, Dave, Nagrebetsky, Alex, Narasimhan, Mangala, Narayanan, Nageswaran, Khan, Rashid Nasim, Nazerali‐Maitland, Alasdair, Neant, Nadège, Neb, Holger, Nekliudov, Nikita, Nelwan, Erni, Neto, Raul, Neumann, Emily, Ng, Pauline Yeung, Ng, Wing Yiu, Nghi, Anthony, Nguyen, Duc, Choileain, Orna Ni, Leathlobhair, Niamh Ni, Nichol, Alistair, Nitayavardhana, Prompak, Nonas, Stephanie, Noordin, Nurul Amani Mohd, Noret, Marion, Norharizam, Nurul Faten Izzati, Norman, Lisa, Notari, Alessandra, Noursadeghi, Mahdad, Nowicka, Karolina, Nowinski, Adam, Nseir, Saad, Nunez, Jose I.; Nurnaningsih, Nurnaningsih, Nusantara, Dwi Utomo, Nyamankolly, Elsa, Nygaard, Anders Benteson, Brien, Fionnuala O.; Callaghan, Annmarie O.; O'Callaghan, Annmarie, Occhipinti, Giovanna, Oconnor, Derbrenn, O'Donnell, Max, Ogston, Tawnya, Ogura, Takayuki, Oh, Tak‐Hyuk, O'Halloran, Sophie, O'Hearn, Katie, Ohshimo, Shinichiro, Oldakowska, Agnieszka, Oliveira, João, Oliveira, Larissa, Olliaro, Piero L.; Ong, Jee Yan, Ong, David S. Y.; Oosthuyzen, Wilna, Opavsky, Anne, Openshaw, Peter, Orakzai, Saijad, Orozco‐Chamorro, Claudia Milena, Ortoleva, Jamel, Osatnik, Javier, O'Shea, Linda, O'Sullivan, Miriam, Othman, Siti Zubaidah, Ouamara, Nadia, Ouissa, Rachida, Oziol, Eric, Pagadoy, Maïder, Pages, Justine, Palacios, Mario, Palacios, Amanda, Palmarini, Massimo, Panarello, Giovanna, Panda, Prasan Kumar, Paneru, Hem, Pang, Lai Hui, Panigada, Mauro, Pansu, Nathalie, Papadopoulos, Aurélie, Parke, Rachael, Parker, Melissa, Parra, Briseida, Pasha, Taha, Pasquier, Jérémie, Pastene, Bruno, Patauner, Fabian, Patel, Drashti, Pathmanathan, Mohan Dass, Patrão, Luís, Patricio, Patricia, Patrier, Juliette, Patterson, Lisa, Pattnaik, Rajyabardhan, Paul, Mical, Paul, Christelle, Paulos, Jorge, Paxton, William A.; Payen, Jean‐François, Peariasamy, Kalaiarasu, Jiménez, Miguel Pedrera, Peek, Giles J.; Peelman, Florent, Peiffer‐Smadja, Nathan, Peigne, Vincent, Pejkovska, Mare, Pelosi, Paolo, Peltan, Ithan D.; Pereira, Rui, Perez, Daniel, Periel, Luis, Perpoint, Thomas, Pesenti, Antonio, Pestre, Vincent, Petrou, Lenka, Petrovic, Michele, Petrov‐Sanchez, Ventzislava, Pettersen, Frank Olav, Peytavin, Gilles, Pharand, Scott, Picard, Walter, Picone, Olivier, de Piero, Maria, Pierobon, Carola, Piersma, Djura, Pimentel, Carlos, Pinto, Raquel, Pires, Catarina, Pironneau, Isabelle, Piroth, Lionel, Pitaloka, Ayodhia, Pius, Riinu, Plantier, Laurent, Png, Hon Shen, Poissy, Julien, Pokeerbux, Ryadh, Pokorska‐Spiewak, Maria, Poli, Sergio, Pollakis, Georgios, Ponscarme, Diane, Popielska, Jolanta, Porto, Diego Bastos, Post, Andra‐Maris, Postma, Douwe F.; Povoa, Pedro, Póvoas, Diana, Powis, Jeff, Prapa, Sofia, Preau, Sébastien, Prebensen, Christian, Preiser, Jean‐Charles, Prinssen, Anton, Pritchard, Mark G.; Priyadarshani, Gamage Dona Dilanthi, Proença, Lucia, Pudota, Sravya, Puéchal, Oriane, Semedi, Bambang Pujo, Pulicken, Mathew, Purcell, Gregory, Quesada, Luisa, Quinones‐Cardona, Vilmaris, González, Víctor Quirós, Quist‐Paulsen, Else, Quraishi, Mohammed, Rabaa, Maia, Rabaud, Christian, Rabindrarajan, Ebenezer, Rafael, Aldo, Rafiq, Marie, Rahardjani, Mutia, Rahman, Rozanah Abd, Rahman, Ahmad Kashfi Haji Ab, Rahutullah, Arsalan, Rainieri, Fernando, Rajahram, Giri Shan, Ramachandran, Pratheema, Ramakrishnan, Nagarajan, Ramli, Ahmad Afiq, Rammaert, Blandine, Ramos, Grazielle Viana, Rana, Asim, Rangappa, Rajavardhan, Ranjan, Ritika, Rapp, Christophe, Rashan, Aasiyah, Rashan, Thalha, Rasheed, Ghulam, Rasmin, Menaldi, Rätsep, Indrek, Rau, Cornelius, Ravi, Tharmini, Raza, Ali, Real, Andre, Rebaudet, Stanislas, Redl, Sarah, Reeve, Brenda, Rehman, Attaur, Reid, Liadain, Reikvam, Dag Henrik, Reis, Renato, Rello, Jordi, Remppis, Jonathan, Remy, Martine, Ren, Hongru, Renk, Hanna, Resseguier, Anne‐Sophie, Revest, Matthieu, Rewa, Oleksa, Reyes, Luis Felipe, Reyes, Tiago, Ribeiro, Maria Ines, Ricchiuto, Antonia, Richardson, David, Richardson, Denise, Richier, Laurent, Ridzuan, Siti Nurul Atikah Ahmad, Riera, Jordi, Rios, Ana L.; Rishu, Asgar, Rispal, Patrick, Risso, Karine, Nuñez, Maria Angelica Rivera, Rizer, Nicholas, Robba, Chiara, Roberto, André, Roberts, Stephanie, Robertson, David L.; Robineau, Olivier, Roche‐Campo, Ferran, Rodari, Paola, Rodeia, Simão, Abreu, Julia Rodriguez, Roessler, Bernhard, Roger, Pierre‐Marie, Roger, Claire, Roilides, Emmanuel, Rojek, Amanda, Romaru, Juliette, Roncon‐Albuquerque, Roberto, Roriz, Mélanie, Rosa‐Calatrava, Manuel, Rose, Michael, Rosenberger, Dorothea, Roslan, Nurul Hidayah Mohammad, Rossanese, Andrea, Rossetti, Matteo, Rossignol, Bénédicte, Rossignol, Patrick, Rousset, Stella, Roy, Carine, Roze, Benoît, Rusmawatiningtyas, Desy, Russell, Clark D.; Ryan, Maria, Ryan, Maeve, Ryckaert, Steffi, Holten, Aleksander Rygh, Saba, Isabela, Sadaf, Sairah, Sadat, Musharaf, Sahraei, Valla, Saint‐Gilles, Maximilien, Sakiyalak, Pranya, Salahuddin, Nawal, Salazar, Leonardo, Saleem, Jodat, Sales, Gabriele, Sallaberry, Stéphane, Salmon Gandonniere, Charlotte, Salvator, Hélène, Sanchez, Olivier, Sanchez‐Miralles, Angel, Sancho‐Shimizu, Vanessa, Sandhu, Gyan, Sandhu, Zulfiqar, Sandrine, Pierre‐François, Sandulescu, Oana, Santos, Marlene, Sarfo‐Mensah, Shirley, Banheiro, Bruno Sarmento, Sarmiento, Iam Claire E.; Sarton, Benjamine, Satya, Ankana, Satyapriya, Sree, Satyawati, Rumaisah, Saviciute, Egle, Savvidou, Parthena, Saw, Yen Tsen, Schaffer, Justin, Schermer, Tjard, Scherpereel, Arnaud, Schneider, Marion, Schroll, Stephan, Schwameis, Michael, Schwartz, Gary, Scott, Janet T.; Scott‐Brown, James, Sedillot, Nicholas, Seitz, Tamara, Selvanayagam, Jaganathan, Selvarajoo, Mageswari, Semaille, Caroline, Semple, Malcolm G.; Senian, Rasidah Bt, Senneville, Eric, Sequeira, Filipa, Sequeira, Tânia, Neto, Ary Serpa, Balazote, Pablo Serrano, Shadowitz, Ellen, Shahidan, Syamin Asyraf, Shamsah, Mohammad, Shankar, Anuraj, Sharjeel, Shaikh, Sharma, Pratima, Shaw, Catherine A.; Shaw, Victoria, Sheharyar, Ashraf, Shetty, Rohan, Shetty, Rajesh Mohan, Shi, Haixia, Shiekh, Mohiuddin, Shime, Nobuaki, Shimizu, Keiki, Shrapnel, Sally, Shrestha, Pramesh Sundar, Shrestha, Shubha Kalyan, Shum, Hoi Ping, Mohammed, Nassima Si, Siang, Ng Yong, Sibiude, Jeanne, Siddiqui, Atif, Sigfrid, Louise, Sillaots, Piret, Silva, Catarina, Silva, Rogério, Silva, Maria Joao, Heng, Benedict Sim Lim, Sin, Wai Ching, Sinatti, Dario, Singh, Punam, Singh, Budha Charan, Sitompul, Pompini Agustina, Sivam, Karisha, Skogen, Vegard, Smith, Sue, Smood, Benjamin, Smyth, Coilin, Smyth, Michelle, Snacken, Morgane, So, Dominic, Soh, Tze Vee, Solberg, Lene Bergendal, Solomon, Joshua, Solomon, Tom, Somers, Emily, Sommet, Agnès, Song, Rima, Song, Myung Jin, Song, Tae, Chia, Jack Song, Sonntagbauer, Michael, Soom, Azlan Mat, Søraas, Arne, Søraas, Camilla Lund, Sotto, Alberto, Soum, Edouard, Sousa, Marta, Sousa, Ana Chora, Uva, Maria Sousa, Souza‐Dantas, Vicente, Sperry, Alexandra, Spinuzza, Elisabetta, Darshana, B. P. Sanka Ruwan Sri, Sriskandan, Shiranee, Stabler, Sarah, Staudinger, Thomas, Stecher, Stephanie‐Susanne, Steinsvik, Trude, Stienstra, Ymkje, Stiksrud, Birgitte, Stolz, Eva, Stone, Amy, Streinu‐Cercel, Adrian, Streinu‐Cercel, Anca, Stuart, David, Stuart, Ami, Subekti, Decy, Suen, Gabriel, Suen, Jacky Y.; Sultana, Asfia, Summers, Charlotte, Supic, Dubravka, Suppiah, Deepashankari, Surovcová, Magdalena, Suwarti, Suwarti, Svistunov, Andrey, Syahrin, Sarah, Syrigos, Konstantinos, Sztajnbok, Jaques, Szuldrzynski, Konstanty, Tabrizi, Shirin, Taccone, Fabio S.; Tagherset, Lysa, Taib, Shahdattul Mawarni, Talarek, Ewa, Taleb, Sara, Talsma, Jelmer, Tamisier, Renaud, Tampubolon, Maria Lawrensia, Tan, Kim Keat, Tan, Yan Chyi, Tanaka, Taku, Tanaka, Hiroyuki, Taniguchi, Hayato, Taqdees, Huda, Taqi, Arshad, Tardivon, Coralie, Tattevin, Pierre, Taufik, M. Azhari, Tawfik, Hassan, Tedder, Richard S.; Tee, Tze Yuan, Teixeira, João, Tejada, Sofia, Tellier, Marie‐Capucine, Teoh, Sze Kye, Teotonio, Vanessa, Téoulé, François, Terpstra, Pleun, Terrier, Olivier, Terzi, Nicolas, Tessier‐Grenier, Hubert, Tey, Adrian, Thabit, Alif Adlan Mohd, Thakur, Anand, Tham, Zhang Duan, Thangavelu, Suvintheran, Thibault, Vincent, Thiberville, Simon‐Djamel, Thill, Benoît, Thirumanickam, Jananee, Thompson, Shaun, Thomson, Emma C.; Thurai, Surain Raaj Thanga, Thwaites, Ryan S.; Tierney, Paul, Tieroshyn, Vadim, Timashev, Peter S.; Timsit, Jean‐François, Vijayaraghavan, Bharath Kumar Tirupakuzhi, Tissot, Noémie, Toh, Jordan Zhien Yang, Toki, Maria, Tonby, Kristian, Tonnii, Sia Loong, Torres, Margarida, Torres, Antoni, Santos‐Olmo, Rosario Maria Torres, Torres‐Zevallos, Hernando, Towers, Michael, Trapani, Tony, Treoux, Théo, Tromeur, Cécile, Trontzas, Ioannis, Trouillon, Tiffany, Truong, Jeanne, Tual, Christelle, Tubiana, Sarah, Tuite, Helen, Turmel, Jean‐Marie, Turtle, Lance C. W.; Tveita, Anders, Twardowski, Pawel, Uchiyama, Makoto, Udayanga, P. G. Ishara, Udy, Andrew, Ullrich, Roman, Uribe, Alberto, Usman, Asad.
Influenza and Other Respiratory Viruses ; 2022.
Article in English | Web of Science | ID: covidwho-2019369

ABSTRACT

Introduction: Case definitions are used to guide clinical practice, surveillance and research protocols. However, how they identify COVID-19-hospitalised patients is not fully understood. We analysed the proportion of hospitalised patients with laboratory-confirmed COVID-19, in the ISARIC prospective cohort study database, meeting widely used case definitions. Methods: Patients were assessed using the Centers for Disease Control (CDC), European Centre for Disease Prevention and Control (ECDC), World Health Organization (WHO) and UK Health Security Agency (UKHSA) case definitions by age, region and time. Case fatality ratios (CFRs) and symptoms of those who did and who did not meet the case definitions were evaluated. Patients with incomplete data and non-laboratory-confirmed test result were excluded. Results: A total of 263,218 of the patients (42%) in the ISARIC database were included. Most patients (90.4%) were from Europe arid Central Asia. The proportions of patients meeting the case definitions were 56.8% (WHO), 74.4% (UKHSA), 81.6% (ECDC) and 82.3% (CDC). For each case definition, patients at the extremes of age distribution met the criteria less frequently than those aged 30 to 70 years;geographical and time variations were also observed. Estimated CFRs were similar for the patients who met the case definitions. However, when more patients did riot meet the case definition, the CFR increased. Conclusions: The performance of case definitions might be different in different regions and may change over time. Similarly concerning is the fact that older patients often did not meet case definitions, risking delayed medical care. While epidemiologists must balance their analytics with field applicability, ongoing revision of case definitions is necessary to improve patient care through early diagnosis and limit potential nosocomial spread.

2.
Int J Behav Nutr Phys Act ; 19(1): 94, 2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1962853

ABSTRACT

BACKGROUND: The number of individuals recovering from severe COVID-19 is increasing rapidly. However, little is known about physical behaviours that make up the 24-h cycle within these individuals. This study aimed to describe physical behaviours following hospital admission for COVID-19 at eight months post-discharge including associations with acute illness severity and ongoing symptoms. METHODS: One thousand seventy-seven patients with COVID-19 discharged from hospital between March and November 2020 were recruited. Using a 14-day wear protocol, wrist-worn accelerometers were sent to participants after a five-month follow-up assessment. Acute illness severity was assessed by the WHO clinical progression scale, and the severity of ongoing symptoms was assessed using four previously reported data-driven clinical recovery clusters. Two existing control populations of office workers and individuals with type 2 diabetes were comparators. RESULTS: Valid accelerometer data from 253 women and 462 men were included. Women engaged in a mean ± SD of 14.9 ± 14.7 min/day of moderate-to-vigorous physical activity (MVPA), with 12.1 ± 1.7 h/day spent inactive and 7.2 ± 1.1 h/day asleep. The values for men were 21.0 ± 22.3 and 12.6 ± 1.7 h /day and 6.9 ± 1.1 h/day, respectively. Over 60% of women and men did not have any days containing a 30-min bout of MVPA. Variability in sleep timing was approximately 2 h in men and women. More severe acute illness was associated with lower total activity and MVPA in recovery. The very severe recovery cluster was associated with fewer days/week containing continuous bouts of MVPA, longer total sleep time, and higher variability in sleep timing. Patients post-hospitalisation with COVID-19 had lower levels of physical activity, greater sleep variability, and lower sleep efficiency than a similarly aged cohort of office workers or those with type 2 diabetes. CONCLUSIONS: Those recovering from a hospital admission for COVID-19 have low levels of physical activity and disrupted patterns of sleep several months after discharge. Our comparative cohorts indicate that the long-term impact of COVID-19 on physical behaviours is significant.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Accelerometry/methods , Aftercare , Aged , Diabetes Mellitus, Type 2/therapy , Exercise , Female , Hospitalization , Hospitals , Humans , Male , Patient Discharge , Sleep
3.
Open Forum Infect Dis ; 9(5): ofac179, 2022 May.
Article in English | MEDLINE | ID: covidwho-1915843

ABSTRACT

Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11-1.70] ng/mL vs 0.24 [0.10-0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51-.60]).

4.
Sci Rep ; 12(1): 6843, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1815585

ABSTRACT

COVID-19 is clinically characterised by fever, cough, and dyspnoea. Symptoms affecting other organ systems have been reported. However, it is the clinical associations of different patterns of symptoms which influence diagnostic and therapeutic decision-making. In this study, we applied clustering techniques to a large prospective cohort of hospitalised patients with COVID-19 to identify clinically meaningful sub-phenotypes. We obtained structured clinical data on 59,011 patients in the UK (the ISARIC Coronavirus Clinical Characterisation Consortium, 4C) and used a principled, unsupervised clustering approach to partition the first 25,477 cases according to symptoms reported at recruitment. We validated our findings in a second group of 33,534 cases recruited to ISARIC-4C, and in 4,445 cases recruited to a separate study of community cases. Unsupervised clustering identified distinct sub-phenotypes. First, a core symptom set of fever, cough, and dyspnoea, which co-occurred with additional symptoms in three further patterns: fatigue and confusion, diarrhoea and vomiting, or productive cough. Presentations with a single reported symptom of dyspnoea or confusion were also identified, alongside a sub-phenotype of patients reporting few or no symptoms. Patients presenting with gastrointestinal symptoms were more commonly female, had a longer duration of symptoms before presentation, and had lower 30-day mortality. Patients presenting with confusion, with or without core symptoms, were older and had a higher unadjusted mortality. Symptom sub-phenotypes were highly consistent in replication analysis within the ISARIC-4C study. Similar patterns were externally verified in patients from a study of self-reported symptoms of mild disease. The large scale of the ISARIC-4C study enabled robust, granular discovery and replication. Clinical interpretation is necessary to determine which of these observations have practical utility. We propose that four sub-phenotypes are usefully distinct from the core symptom group: gastro-intestinal disease, productive cough, confusion, and pauci-symptomatic presentations. Importantly, each is associated with an in-hospital mortality which differs from that of patients with core symptoms.


Subject(s)
COVID-19 , Confusion , Cough , Dyspnea , Fatigue , Female , Fever , Humans , Prospective Studies
5.
Pediatr Res ; 2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1805591

ABSTRACT

BACKGROUND: We hypothesised that the clinical characteristics of hospitalised children and young people (CYP) with SARS-CoV-2 in the UK second wave (W2) would differ from the first wave (W1) due to the alpha variant (B.1.1.7), school reopening and relaxation of shielding. METHODS: Prospective multicentre observational cohort study of patients <19 years hospitalised in the UK with SARS-CoV-2 between 17/01/20 and 31/01/21. Clinical characteristics were compared between W1 and W2 (W1 = 17/01/20-31/07/20,W2 = 01/08/20-31/01/21). RESULTS: 2044 CYP < 19 years from 187 hospitals. 427/2044 (20.6%) with asymptomatic/incidental SARS-CoV-2 were excluded from main analysis. 16.0% (248/1548) of symptomatic CYP were admitted to critical care and 0.8% (12/1504) died. 5.6% (91/1617) of symptomatic CYP had Multisystem Inflammatory Syndrome in Children (MIS-C). After excluding CYP with MIS-C, patients in W2 had lower Paediatric Early Warning Scores (PEWS, composite vital sign score), lower antibiotic use and less respiratory and cardiovascular support than W1. The proportion of CYP admitted to critical care was unchanged. 58.0% (938/1617) of symptomatic CYP had no reported comorbidity. Patients without co-morbidities were younger (42.4%, 398/938, <1 year), had lower PEWS, shorter length of stay and less respiratory support. CONCLUSIONS: We found no evidence of increased disease severity in W2 vs W1. A large proportion of hospitalised CYP had no comorbidity. IMPACT: No evidence of increased severity of COVID-19 admissions amongst children and young people (CYP) in the second vs first wave in the UK, despite changes in variant, relaxation of shielding and return to face-to-face schooling. CYP with no comorbidities made up a significant proportion of those admitted. However, they had shorter length of stays and lower treatment requirements than CYP with comorbidities once those with MIS-C were excluded. At least 20% of CYP admitted in this cohort had asymptomatic/incidental SARS-CoV-2 infection. This paper was presented to SAGE to inform CYP vaccination policy in the UK.

7.
Diabetes Care ; 45(5): 1132-1140, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1742155

ABSTRACT

OBJECTIVE: To investigate the association between admission blood glucose levels and risk of in-hospital cardiovascular and renal complications. RESEARCH DESIGN AND METHODS: In this multicenter prospective study of 36,269 adults hospitalized with COVID-19 between 6 February 2020 and 16 March 2021 (N = 143,266), logistic regression models were used to explore associations between admission glucose level (mmol/L and mg/dL) and odds of in-hospital complications, including heart failure, arrhythmia, cardiac ischemia, cardiac arrest, coagulation complications, stroke, and renal injury. Nonlinearity was investigated using restricted cubic splines. Interaction models explored whether associations between glucose levels and complications were modified by clinically relevant factors. RESULTS: Cardiovascular and renal complications occurred in 10,421 (28.7%) patients; median admission glucose level was 6.7 mmol/L (interquartile range 5.8-8.7) (120.6 mg/dL [104.4-156.6]). While accounting for confounders, for all complications except cardiac ischemia and stroke, there was a nonlinear association between glucose and cardiovascular and renal complications. For example, odds of heart failure, arrhythmia, coagulation complications, and renal injury decreased to a nadir at 6.4 mmol/L (115 mg/dL), 4.9 mmol/L (88.2 mg/dL), 4.7 mmol/L (84.6 mg/dL), and 5.8 mmol/L (104.4 mg/dL), respectively, and increased thereafter until 26.0 mmol/L (468 mg/dL), 50.0 mmol/L (900 mg/dL), 8.5 mmol/L (153 mg/dL), and 32.4 mmol/L (583.2 mg/dL). Compared with 5 mmol/L (90 mg/dL), odds ratios at these glucose levels were 1.28 (95% CI 0.96, 1.69) for heart failure, 2.23 (1.03, 4.81) for arrhythmia, 1.59 (1.36, 1.86) for coagulation complications, and 2.42 (2.01, 2.92) for renal injury. For most complications, a modifying effect of age was observed, with higher odds of complications at higher glucose levels for patients age <69 years. Preexisting diabetes status had a similar modifying effect on odds of complications, but evidence was strongest for renal injury, cardiac ischemia, and any cardiovascular/renal complication. CONCLUSIONS: Increased odds of cardiovascular or renal complications were observed for admission glucose levels indicative of both hypo- and hyperglycemia. Admission glucose could be used as a marker for risk stratification of high-risk patients. Further research should evaluate interventions to optimize admission glucose on improving COVID-19 outcomes.


Subject(s)
COVID-19 , Heart Failure , Stroke , Adult , Aged , Blood Glucose , COVID-19/complications , COVID-19/epidemiology , Humans , Ischemia , Kidney , Prospective Studies , Stroke/epidemiology , Stroke/etiology
8.
PLoS Med ; 19(2): e1003927, 2022 02.
Article in English | MEDLINE | ID: covidwho-1705011

ABSTRACT

BACKGROUND: Several countries restricted the administration of ChAdOx1 to older age groups in 2021 over safety concerns following case reports and observed versus expected analyses suggesting a possible association with cerebral venous sinus thrombosis (CVST). Large datasets are required to precisely estimate the association between Coronavirus Disease 2019 (COVID-19) vaccination and CVST due to the extreme rarity of this event. We aimed to accomplish this by combining national data from England, Scotland, and Wales. METHODS AND FINDINGS: We created data platforms consisting of linked primary care, secondary care, mortality, and virological testing data in each of England, Scotland, and Wales, with a combined cohort of 11,637,157 people and 6,808,293 person years of follow-up. The cohort start date was December 8, 2020, and the end date was June 30, 2021. The outcome measure we examined was incident CVST events recorded in either primary or secondary care records. We carried out a self-controlled case series (SCCS) analysis of this outcome following first dose vaccination with ChAdOx1 and BNT162b2. The observation period consisted of an initial 90-day reference period, followed by a 2-week prerisk period directly prior to vaccination, and a 4-week risk period following vaccination. Counts of CVST cases from each country were tallied, then expanded into a full dataset with 1 row for each individual and observation time period. There was a combined total of 201 incident CVST events in the cohorts (29.5 per million person years). There were 81 CVST events in the observation period among those who a received first dose of ChAdOx1 (approximately 16.34 per million doses) and 40 for those who received a first dose of BNT162b2 (approximately 12.60 per million doses). We fitted conditional Poisson models to estimate incidence rate ratios (IRRs). Vaccination with ChAdOx1 was associated with an elevated risk of incident CVST events in the 28 days following vaccination, IRR = 1.93 (95% confidence interval (CI) 1.20 to 3.11). We did not find an association between BNT162b2 and CVST in the 28 days following vaccination, IRR = 0.78 (95% CI 0.34 to 1.77). Our study had some limitations. The SCCS study design implicitly controls for variables that are constant over the observation period, but also assumes that outcome events are independent of exposure. This assumption may not be satisfied in the case of CVST, firstly because it is a serious adverse event, and secondly because the vaccination programme in the United Kingdom prioritised the clinically extremely vulnerable and those with underlying health conditions, which may have caused a selection effect for individuals more prone to CVST. Although we pooled data from several large datasets, there was still a low number of events, which may have caused imprecision in our estimates. CONCLUSIONS: In this study, we observed a small elevated risk of CVST events following vaccination with ChAdOx1, but not BNT162b2. Our analysis pooled information from large datasets from England, Scotland, and Wales. This evidence may be useful in risk-benefit analyses of vaccine policies and in providing quantification of risks associated with vaccination to the general public.


Subject(s)
BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , SARS-CoV-2/pathogenicity , Sinus Thrombosis, Intracranial/etiology , Adult , Aged , BNT162 Vaccine/adverse effects , COVID-19 Vaccines/adverse effects , Case-Control Studies , ChAdOx1 nCoV-19/adverse effects , Cohort Studies , Humans , Male , Middle Aged , United Kingdom , Vaccination/statistics & numerical data , Wales
9.
ERJ Open Res ; 8(1)2022 Jan.
Article in English | MEDLINE | ID: covidwho-1690978

ABSTRACT

Due to the large number of patients with severe coronavirus disease 2019 (COVID-19), many were treated outside the traditional walls of the intensive care unit (ICU), and in many cases, by personnel who were not trained in critical care. The clinical characteristics and the relative impact of caring for severe COVID-19 patients outside the ICU is unknown. This was a multinational, multicentre, prospective cohort study embedded in the International Severe Acute Respiratory and Emerging Infection Consortium World Health Organization COVID-19 platform. Severe COVID-19 patients were identified as those admitted to an ICU and/or those treated with one of the following treatments: invasive or noninvasive mechanical ventilation, high-flow nasal cannula, inotropes or vasopressors. A logistic generalised additive model was used to compare clinical outcomes among patients admitted or not to the ICU. A total of 40 440 patients from 43 countries and six continents were included in this analysis. Severe COVID-19 patients were frequently male (62.9%), older adults (median (interquartile range (IQR), 67 (55-78) years), and with at least one comorbidity (63.2%). The overall median (IQR) length of hospital stay was 10 (5-19) days and was longer in patients admitted to an ICU than in those who were cared for outside the ICU (12 (6-23) days versus 8 (4-15) days, p<0.0001). The 28-day fatality ratio was lower in ICU-admitted patients (30.7% (5797 out of 18 831) versus 39.0% (7532 out of 19 295), p<0.0001). Patients admitted to an ICU had a significantly lower probability of death than those who were not (adjusted OR 0.70, 95% CI 0.65-0.75; p<0.0001). Patients with severe COVID-19 admitted to an ICU had significantly lower 28-day fatality ratio than those cared for outside an ICU.

10.
Nephrol Dial Transplant ; 37(2): 271-284, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1648225

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is common in coronavirus disease 2019 (COVID-19). This study investigated adults hospitalized with COVID-19 and hypothesized that risk factors for AKI would include comorbidities and non-White race. METHODS: A prospective multicentre cohort study was performed using patients admitted to 254 UK hospitals with COVID-19 between 17 January 2020 and 5 December 2020. RESULTS: Of 85 687 patients, 2198 (2.6%) received acute kidney replacement therapy (KRT). Of 41 294 patients with biochemistry data, 13 000 (31.5%) had biochemical AKI: 8562 stage 1 (65.9%), 2609 stage 2 (20.1%) and 1829 stage 3 (14.1%). The main risk factors for KRT were chronic kidney disease (CKD) [adjusted odds ratio (aOR) 3.41: 95% confidence interval 3.06-3.81], male sex (aOR 2.43: 2.18-2.71) and Black race (aOR 2.17: 1.79-2.63). The main risk factors for biochemical AKI were admission respiratory rate >30 breaths per minute (aOR 1.68: 1.56-1.81), CKD (aOR 1.66: 1.57-1.76) and Black race (aOR 1.44: 1.28-1.61). There was a gradated rise in the risk of 28-day mortality by increasing severity of AKI: stage 1 aOR 1.58 (1.49-1.67), stage 2 aOR 2.41 (2.20-2.64), stage 3 aOR 3.50 (3.14-3.91) and KRT aOR 3.06 (2.75-3.39). AKI rates peaked in April 2020 and the subsequent fall in rates could not be explained by the use of dexamethasone or remdesivir. CONCLUSIONS: AKI is common in adults hospitalized with COVID-19 and it is associated with a heightened risk of mortality. Although the rates of AKI have fallen from the early months of the pandemic, high-risk patients should have their kidney function and fluid status monitored closely.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Cohort Studies , Hospital Mortality , Humans , Male , Prospective Studies , Retrospective Studies , Risk Factors , SARS-CoV-2 , United Kingdom , World Health Organization
11.
ERJ open research ; 2021.
Article in English | EuropePMC | ID: covidwho-1610380

ABSTRACT

Due to the large number of patients with severe COVID-19, many were treated outside of the traditional walls of the ICU, and in many cases, by personnel who were not trained in critical care. The clinical characteristics and the relative impact of caring for severe COVID-19 patients outside of the ICU is unknown. This was a multinational, multicentre, prospective cohort study embedded in the ISARIC WHO COVID-19 platform. Severe COVID-19 patients were identified as those admitted to an ICU and/or those treated with one of the following treatments: invasive or non-invasive mechanical ventilation, high-flow nasal cannula, inotropes, and vasopressors. A logistic Generalised Additive Model was used to compare clinical outcomes among patients admitted and not to the ICU. A total of 40 440 patients from 43 countries and six continents were included in this analysis. Severe COVID-19 patients were frequently male (62.9%), older adults (median [IQR], 67 years [55, 78]), and with at least one comorbidity (63.2%). The overall median (IQR) length of hospital stay was 10 days (5–19) and was longer in patients admitted to an ICU than in those that were cared for outside of ICU (12 [6–23] versus 8 [4–15] days, p<0.0001). The 28-day fatality ratio was lower in ICU-admitted patients (30.7% [5797/18831] versus 39.0% [7532/19295], p<0.0001). Patients admitted to an ICU had a significantly lower probability of death than those who were not (adjusted OR:0.70, 95%CI: 0.65-0.75, p<0.0001). Patients with severe COVID-19 admitted to an ICU had significantly lower 28-day fatality ratio than those cared for outside of an ICU.

12.
Heart ; 108(15): 1200-1208, 2022 Jul 13.
Article in English | MEDLINE | ID: covidwho-1583068

ABSTRACT

OBJECTIVE: Using a large national database of people hospitalised with COVID-19, we investigated the contribution of cardio-metabolic conditions, multi-morbidity and ethnicity on the risk of in-hospital cardiovascular complications and death. METHODS: A multicentre, prospective cohort study in 302 UK healthcare facilities of adults hospitalised with COVID-19 between 6 February 2020 and 16 March 2021. Logistic models were used to explore associations between baseline patient ethnicity, cardiometabolic conditions and multimorbidity (0, 1, 2, >2 conditions), and in-hospital cardiovascular complications (heart failure, arrhythmia, cardiac ischaemia, cardiac arrest, coagulation complications, stroke), renal injury and death. RESULTS: Of 65 624 patients hospitalised with COVID-19, 44 598 (68.0%) reported at least one cardiometabolic condition on admission. Cardiovascular/renal complications or death occurred in 24 609 (38.0%) patients. Baseline cardiometabolic conditions were independently associated with increased odds of in-hospital complications and this risk increased in the presence of cardiometabolic multimorbidity. For example, compared with having no cardiometabolic conditions, 1, 2 or ≥3 conditions was associated with 1.46 (95% CI 1.39 to 1.54), 2.04 (95% CI 1.93 to 2.15) and 3.10 (95% CI 2.92 to 3.29) times higher odds of any cardiovascular/renal complication, respectively. A similar pattern was observed for all-cause death. Compared with the white group, the South Asian (OR 1.19, 95% CI 1.10 to 1.29) and black (OR 1.53 to 95% CI 1.37 to 1.72) ethnic groups had higher risk of any cardiovascular/renal complication. CONCLUSIONS: In hospitalised patients with COVID-19, cardiovascular complications or death impacts just under half of all patients, with the highest risk in those of South Asian or Black ethnicity and in patients with cardiometabolic multimorbidity.


Subject(s)
COVID-19 , Adult , COVID-19/complications , COVID-19/epidemiology , Ethnicity , Humans , Kidney , Multimorbidity , Prospective Studies , Risk Factors
13.
Lancet ; 399(10319): 25-35, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1586218

ABSTRACT

BACKGROUND: Reports suggest that COVID-19 vaccine effectiveness is decreasing, but whether this reflects waning or new SARS-CoV-2 variants-especially delta (B.1.617.2)-is unclear. We investigated the association between time since two doses of ChAdOx1 nCoV-19 vaccine and risk of severe COVID-19 outcomes in Scotland (where delta was dominant), with comparative analyses in Brazil (where delta was uncommon). METHODS: In this retrospective, population-based cohort study in Brazil and Scotland, we linked national databases from the EAVE II study in Scotland; and the COVID-19 Vaccination Campaign, Acute Respiratory Infection Suspected Cases, and Severe Acute Respiratory Infection/Illness datasets in Brazil) for vaccination, laboratory testing, clinical, and mortality data. We defined cohorts of adults (aged ≥18 years) who received two doses of ChAdOx1 nCoV-19 and compared rates of severe COVID-19 outcomes (ie, COVID-19 hospital admission or death) across fortnightly periods, relative to 2-3 weeks after the second dose. Entry to the Scotland cohort started from May 19, 2021, and entry to the Brazil cohort started from Jan 18, 2021. Follow-up in both cohorts was until Oct 25, 2021. Poisson regression was used to estimate rate ratios (RRs) and vaccine effectiveness, with 95% CIs. FINDINGS: 1 972 454 adults received two doses of ChAdOx1 nCoV-19 in Scotland and 42 558 839 in Brazil, with longer follow-up in Scotland because two-dose vaccination began earlier in Scotland than in Brazil. In Scotland, RRs for severe COVID-19 increased to 2·01 (95% CI 1·54-2·62) at 10-11 weeks, 3·01 (2·26-3·99) at 14-15 weeks, and 5·43 (4·00-7·38) at 18-19 weeks after the second dose. The pattern of results was similar in Brazil, with RRs of 2·29 (2·01-2·61) at 10-11 weeks, 3·10 (2·63-3·64) at 14-15 weeks, and 4·71 (3·83-5·78) at 18-19 weeks after the second dose. In Scotland, vaccine effectiveness decreased from 83·7% (95% CI 79·7-87·0) at 2-3 weeks, to 75·9% (72·9-78·6) at 14-15 weeks, and 63·7% (59·6-67·4) at 18-19 weeks after the second dose. In Brazil, vaccine effectiveness decreased from 86·4% (85·4-87·3) at 2-3 weeks, to 59·7% (54·6-64·2) at 14-15 weeks, and 42·2% (32·4-50·6) at 18-19 weeks. INTERPRETATION: We found waning vaccine protection of ChAdOx1 nCoV-19 against COVID-19 hospital admissions and deaths in both Scotland and Brazil, this becoming evident within three months of the second vaccine dose. Consideration needs to be given to providing booster vaccine doses for people who have received ChAdOx1 nCoV-19. FUNDING: UK Research and Innovation (Medical Research Council), Scottish Government, Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK, Fiocruz, Fazer o Bem Faz Bem Programme; Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/mortality , COVID-19/prevention & control , /administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Female , Hospitalization , Humans , Immunization, Secondary , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Scotland/epidemiology , Time Factors , Vaccination
14.
Lancet Respir Med ; 9(11): 1275-1287, 2021 11.
Article in English | MEDLINE | ID: covidwho-1514340

ABSTRACT

BACKGROUND: The impact of COVID-19 on physical and mental health and employment after hospitalisation with acute disease is not well understood. The aim of this study was to determine the effects of COVID-19-related hospitalisation on health and employment, to identify factors associated with recovery, and to describe recovery phenotypes. METHODS: The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a multicentre, long-term follow-up study of adults (aged ≥18 years) discharged from hospital in the UK with a clinical diagnosis of COVID-19, involving an assessment between 2 and 7 months after discharge, including detailed recording of symptoms, and physiological and biochemical testing. Multivariable logistic regression was done for the primary outcome of patient-perceived recovery, with age, sex, ethnicity, body-mass index, comorbidities, and severity of acute illness as covariates. A post-hoc cluster analysis of outcomes for breathlessness, fatigue, mental health, cognitive impairment, and physical performance was done using the clustering large applications k-medoids approach. The study is registered on the ISRCTN Registry (ISRCTN10980107). FINDINGS: We report findings for 1077 patients discharged from hospital between March 5 and Nov 30, 2020, who underwent assessment at a median of 5·9 months (IQR 4·9-6·5) after discharge. Participants had a mean age of 58 years (SD 13); 384 (36%) were female, 710 (69%) were of white ethnicity, 288 (27%) had received mechanical ventilation, and 540 (50%) had at least two comorbidities. At follow-up, only 239 (29%) of 830 participants felt fully recovered, 158 (20%) of 806 had a new disability (assessed by the Washington Group Short Set on Functioning), and 124 (19%) of 641 experienced a health-related change in occupation. Factors associated with not recovering were female sex, middle age (40-59 years), two or more comorbidities, and more severe acute illness. The magnitude of the persistent health burden was substantial but only weakly associated with the severity of acute illness. Four clusters were identified with different severities of mental and physical health impairment (n=767): very severe (131 patients, 17%), severe (159, 21%), moderate along with cognitive impairment (127, 17%), and mild (350, 46%). Of the outcomes used in the cluster analysis, all were closely related except for cognitive impairment. Three (3%) of 113 patients in the very severe cluster, nine (7%) of 129 in the severe cluster, 36 (36%) of 99 in the moderate cluster, and 114 (43%) of 267 in the mild cluster reported feeling fully recovered. Persistently elevated serum C-reactive protein was positively associated with cluster severity. INTERPRETATION: We identified factors related to not recovering after hospital admission with COVID-19 at 6 months after discharge (eg, female sex, middle age, two or more comorbidities, and more acute severe illness), and four different recovery phenotypes. The severity of physical and mental health impairments were closely related, whereas cognitive health impairments were independent. In clinical care, a proactive approach is needed across the acute severity spectrum, with interdisciplinary working, wide access to COVID-19 holistic clinical services, and the potential to stratify care. FUNDING: UK Research and Innovation and National Institute for Health Research.


Subject(s)
COVID-19 , Health Status , Mental Health , Acute Disease , Adult , Aged , COVID-19/complications , Cognition , Comorbidity , Female , Follow-Up Studies , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology
15.
Journal of the Intensive Care Society ; : 17511437211052226, 2021.
Article in English | Sage | ID: covidwho-1480400

ABSTRACT

Background:We aimed to compare the prevalence and severity of fatigue in survivors of Covid-19 versus non-Covid-19 critical illness, and to explore potential associations between baseline characteristics and worse recovery.Methods:We conducted a secondary analysis of two prospectively collected datasets. The population included was 92 patients who received invasive mechanical ventilation (IMV) with Covid-19, and 240 patients who received IMV with non-Covid-19 illness before the pandemic. Follow-up data were collected post-hospital discharge using self-reported questionnaires. The main outcome measures were self-reported fatigue severity and the prevalence of severe fatigue (severity >7/10) 3 and 12-months post-hospital discharge.Results:Covid-19 IMV-patients were significantly younger with less prior comorbidity, and more males, than pre-pandemic IMV-patients. At 3-months, the prevalence (38.9% [7/18] vs. 27.1% [51/188]) and severity (median 5.5/10 vs 5.0/10) of fatigue were similar between the Covid-19 and pre-pandemic populations, respectively. At 6-months, the prevalence (10.3% [3/29] vs. 32.5% [54/166]) and severity (median 2.0/10 vs. 5.7/10) of fatigue were less in the Covid-19 cohort. In the total sample of IMV-patients included (i.e. all Covid-19 and pre-pandemic patients), having Covid-19 was significantly associated with less severe fatigue (severity <7/10) after adjusting for age, sex and prior comorbidity (adjusted OR 0.35 (95%CI 0.15?0.76, p=0.01).Conclusion:Fatigue may be less severe after Covid-19 than after other critical illness.

16.
J R Soc Med ; 115(1): 22-30, 2022 01.
Article in English | MEDLINE | ID: covidwho-1480338

ABSTRACT

OBJECTIVES: We investigated the association between multimorbidity among patients hospitalised with COVID-19 and their subsequent risk of mortality. We also explored the interaction between the presence of multimorbidity and the requirement for an individual to shield due to the presence of specific conditions and its association with mortality. DESIGN: We created a cohort of patients hospitalised in Scotland due to COVID-19 during the first wave (between 28 February 2020 and 22 September 2020) of the pandemic. We identified the level of multimorbidity for the patient on admission and used logistic regression to analyse the association between multimorbidity and risk of mortality among patients hospitalised with COVID-19. SETTING: Scotland, UK. PARTICIPANTS: Patients hospitalised due to COVID-19. MAIN OUTCOME MEASURES: Mortality as recorded on National Records of Scotland death certificate and being coded for COVID-19 on the death certificate or death within 28 days of a positive COVID-19 test. RESULTS: Almost 58% of patients admitted to the hospital due to COVID-19 had multimorbidity. Adjusting for confounding factors of age, sex, social class and presence in the shielding group, multimorbidity was significantly associated with mortality (adjusted odds ratio 1.48, 95%CI 1.26-1.75). The presence of multimorbidity and presence in the shielding patients list were independently associated with mortality but there was no multiplicative effect of having both (adjusted odds ratio 0.91, 95%CI 0.64-1.29). CONCLUSIONS: Multimorbidity is an independent risk factor of mortality among individuals who were hospitalised due to COVID-19. Individuals with multimorbidity could be prioritised when making preventive policies, for example, by expanding shielding advice to this group and prioritising them for vaccination.


Subject(s)
COVID-19/mortality , Hospital Mortality , Hospitalization/statistics & numerical data , Multimorbidity , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Scotland/epidemiology , Social Determinants of Health , Sociodemographic Factors
17.
Nephrol Dial Transplant ; 37(2): 271-284, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1475823

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is common in coronavirus disease 2019 (COVID-19). This study investigated adults hospitalized with COVID-19 and hypothesized that risk factors for AKI would include comorbidities and non-White race. METHODS: A prospective multicentre cohort study was performed using patients admitted to 254 UK hospitals with COVID-19 between 17 January 2020 and 5 December 2020. RESULTS: Of 85 687 patients, 2198 (2.6%) received acute kidney replacement therapy (KRT). Of 41 294 patients with biochemistry data, 13 000 (31.5%) had biochemical AKI: 8562 stage 1 (65.9%), 2609 stage 2 (20.1%) and 1829 stage 3 (14.1%). The main risk factors for KRT were chronic kidney disease (CKD) [adjusted odds ratio (aOR) 3.41: 95% confidence interval 3.06-3.81], male sex (aOR 2.43: 2.18-2.71) and Black race (aOR 2.17: 1.79-2.63). The main risk factors for biochemical AKI were admission respiratory rate >30 breaths per minute (aOR 1.68: 1.56-1.81), CKD (aOR 1.66: 1.57-1.76) and Black race (aOR 1.44: 1.28-1.61). There was a gradated rise in the risk of 28-day mortality by increasing severity of AKI: stage 1 aOR 1.58 (1.49-1.67), stage 2 aOR 2.41 (2.20-2.64), stage 3 aOR 3.50 (3.14-3.91) and KRT aOR 3.06 (2.75-3.39). AKI rates peaked in April 2020 and the subsequent fall in rates could not be explained by the use of dexamethasone or remdesivir. CONCLUSIONS: AKI is common in adults hospitalized with COVID-19 and it is associated with a heightened risk of mortality. Although the rates of AKI have fallen from the early months of the pandemic, high-risk patients should have their kidney function and fluid status monitored closely.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Cohort Studies , Hospital Mortality , Humans , Male , Prospective Studies , Retrospective Studies , Risk Factors , SARS-CoV-2 , United Kingdom , World Health Organization
20.
Lancet Reg Health Eur ; 8: 100186, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1397545

ABSTRACT

BACKGROUND: This study sought to establish the long-term effects of Covid-19 following hospitalisation. METHODS: 327 hospitalised participants, with SARS-CoV-2 infection were recruited into a prospective multicentre cohort study at least 3 months post-discharge. The primary outcome was self-reported recovery at least ninety days after initial Covid-19 symptom onset. Secondary outcomes included new symptoms, disability (Washington group short scale), breathlessness (MRC Dyspnoea scale) and quality of life (EQ5D-5L). FINDINGS: 55% of participants reported not feeling fully recovered. 93% reported persistent symptoms, with fatigue the most common (83%), followed by breathlessness (54%). 47% reported an increase in MRC dyspnoea scale of at least one grade. New or worse disability was reported by 24% of participants. The EQ5D-5L summary index was significantly worse following acute illness (median difference 0.1 points on a scale of 0 to 1, IQR: -0.2 to 0.0). Females under the age of 50 years were five times less likely to report feeling recovered (adjusted OR 5.09, 95% CI 1.64 to 15.74), were more likely to have greater disability (adjusted OR 4.22, 95% CI 1.12 to 15.94), twice as likely to report worse fatigue (adjusted OR 2.06, 95% CI 0.81 to 3.31) and seven times more likely to become more breathless (adjusted OR 7.15, 95% CI 2.24 to 22.83) than men of the same age. INTERPRETATION: Survivors of Covid-19 experienced long-term symptoms, new disability, increased breathlessness, and reduced quality of life. These findings were present in young, previously healthy working age adults, and were most common in younger females. FUNDING: National Institute for Health Research, UK Medical Research Council, Wellcome Trust, Department for International Development and the Bill and Melinda Gates Foundation.

SELECTION OF CITATIONS
SEARCH DETAIL