Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Front Med Technol ; 3: 702526, 2021.
Article in English | MEDLINE | ID: covidwho-1638651


During the COVID-19 pandemic, global health services have faced unprecedented demands. Many key workers in health and social care have experienced crippling shortages of personal protective equipment, and clinical engineers in hospitals have been severely stretched due to insufficient supplies of medical devices and equipment. Many engineers who normally work in other sectors have been redeployed to address the crisis, and they have rapidly improvised solutions to some of the challenges that emerged, using a combination of low-tech and cutting-edge methods. Much publicity has been given to efforts to design new ventilator systems and the production of 3D-printed face shields, but many other devices and systems have been developed or explored. This paper presents a description of efforts to reverse engineer or redesign critical parts, specifically a manifold for an anaesthesia station, a leak port, plasticware for COVID-19 testing, and a syringe pump lock box. The insights obtained from these projects were used to develop a product lifecycle management system based on Aras Innovator, which could with further work be deployed to facilitate future rapid response manufacturing of bespoke hardware for healthcare. The lessons learned could inform plans to exploit distributed manufacturing to secure back-up supply chains for future emergency situations. If applied generally, the concept of distributed manufacturing could give rise to "21st century cottage industries" or "nanofactories," where high-tech goods are produced locally in small batches.

Appl Physiol Nutr Metab ; 46(7): 753-762, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1571437


We sought to determine the impact of wearing cloth or surgical masks on the cardiopulmonary responses to moderate-intensity exercise. Twelve subjects (n = 5 females) completed three, 8-min cycling trials while breathing through a non-rebreathing valve (laboratory control), cloth, or surgical mask. Heart rate (HR), oxyhemoglobin saturation (SpO2), breathing frequency, mouth pressure, partial pressure of end-tidal carbon dioxide (PetCO2) and oxygen (PetO2), dyspnea were measured throughout exercise. A subset of n = 6 subjects completed an additional exercise bout without a mask (ecological control). There were no differences in breathing frequency, HR or SpO2 across conditions (all p > 0.05). Compared with the laboratory control (4.7 ± 0.9 cmH2O [mean ± SD]), mouth pressure swings were smaller with the surgical mask (0.9 ± 0.7; p < 0.0001), but similar with the cloth mask (3.6 ± 4.8 cmH2O; p = 0.66). Wearing a cloth mask decreased PetO2 (-3.5 ± 3.7 mm Hg) and increased PetCO2 (+2.0 ± 1.3 mm Hg) relative to the ecological control (both p < 0.05). There were no differences in end-tidal gases between mask conditions and laboratory control (both p > 0.05). Dyspnea was similar between the control conditions and the surgical mask (p > 0.05) but was greater with the cloth mask compared with laboratory (+0.9 ± 1.2) and ecological (+1.5 ± 1.3) control conditions (both p < 0.05). Wearing a mask during short-term moderate-intensity exercise may increase dyspnea but has minimal impact on the cardiopulmonary response. Novelty: Wearing surgical or cloth masks during exercise has no impact on breathing frequency, tidal volume, oxygenation, and heart rate However, there are some changes in inspired and expired gas fractions that are physiologically irrelevant. In young healthy individuals, wearing surgical or cloth masks during submaximal exercise has few physiological consequences.

Exercise/physiology , Heart Rate , Masks , Oxyhemoglobins/metabolism , Respiratory Rate , Adult , COVID-19/prevention & control , Carbon Dioxide/physiology , Dyspnea/physiopathology , Equipment Design , Exercise Test , Face , Female , Humans , Male , Mouth/physiology , Oxygen/physiology , Partial Pressure , Pressure , Skin Temperature , Tidal Volume , Young Adult