Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
arxiv; 2024.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2403.10402v1

ABSTRACT

Mathematical and simulation models are often used to predict the spread of a disease and estimate the impact of public health interventions, and many such models have been developed and used during the COVID-19 pandemic. This paper describes a study that systematically compared models for a university community, which has a much smaller but more connected population than a state or nation. We developed a stochastic agent-based model, a deterministic compartment model, and a model based on ordinary differential equations. All three models represented the disease progression with the same susceptible-exposed-infectious-recovered (SEIR) model. We created a baseline scenario for a population of 14,000 students and faculty and eleven other scenarios for combinations of interventions such as regular testing, contact tracing, quarantine, isolation, moving courses online, mask wearing, improving ventilation, and vaccination. We used parameter values from other epidemiological studies and incorporated data about COVID-19 testing in College Park, Maryland, but the study was designed to compare modeling approaches to each other using a synthetic population. For each scenario we used the models to estimate the number of persons who become infected over a semester of 119 days. We evaluated the models by comparing their predictions and evaluating their parsimony and computational effort. The agent-based model (ABM) and the deterministic compartment model (DCM) had similar results with cyclic flow of persons to and from quarantine, but the model based on ordinary differential equations failed to capture these dynamics. The ABM's computation time was much greater than the other two models' computation time. The DCM captured some of the dynamics that were present in the ABM's predictions and, like those from the ABM, clearly showed the importance of testing and moving classes on-line.

2.
Clin Infect Dis ; 76(10): 1854-1859, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20240001

ABSTRACT

This is an account that should be heard of an important struggle: the struggle of a large group of experts who came together at the beginning of the COVID-19 pandemic to warn the world about the risk of airborne transmission and the consequences of ignoring it. We alerted the World Health Organization about the potential significance of the airborne transmission of SARS-CoV-2 and the urgent need to control it, but our concerns were dismissed. Here we describe how this happened and the consequences. We hope that by reporting this story we can raise awareness of the importance of interdisciplinary collaboration and the need to be open to new evidence, and to prevent it from happening again. Acknowledgement of an issue, and the emergence of new evidence related to it, is the first necessary step towards finding effective mitigation solutions.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pandemics/prevention & control , World Health Organization , Societies
3.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202306.0659.v1

ABSTRACT

Long COVID-19 syndrom appears after Severe Acute Respiratory Syndrome-Corona Virus (SARS-CoV-2) infection with acute damages to microcapillaries, microthombi and endotheliitis. However, the mech-anisms involved in these processes remain to be identified. All blood vessels are lined with a monolayer of endothelial cells called vascular endothelium of which one of the major properties is to prevent coagulation. VE cadherin is a component of endothelial cell junctions responsible for maintenance of the integrity of the vessels through homophilic interaction of its Ca++- dependent adhesive extracellular domain. We first provide evidence that VE-cadherin is a target in vitro for ACE2 cleavage because its extracellular domain (hrVE-ED) contains two amino acid sequences for ACE2 substrate recognition at the po-sitions 256P-F257 and 321PMKP-325L. Indeed, incubation of hrVE-ED with the active ecto-peptidase hrACE2 for 16 hrs in the presence of 10M ZnCl2 showed a dose-dependent (from 0.2 ng/ul to 2 ng/ul) decrease of the VE-cadherin immunoreactive band. In vivo, in the blood from patients having severe COVID-19, a circulating form of ACE2 was detected with an apparent molecular mass of 70 kDa while it was barely detectable in patients with mild infection. Of importance, in the patients with severe COVID-19 disease, the presence of three soluble fragments of VE-cadherin (70, 62, 54 kDa) were detected using the antiEC1 antibody while only the 54 kDa fragment was present in patients with mild disease. Altogether, these data clearly support a role for ACE2 on VE-cadherin cleavage leading to potential biomarkers in SARS-CoV2 infection related with the vascular disease in “Long COVID-19”.

5.
Clin Infect Dis ; 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2267805

ABSTRACT

BACKGROUND: Aerosol inhalation is recognized as the dominant mode of SARS-CoV-2 transmission. Three highly transmissible lineages evolved during the pandemic. One hypothesis to explain increased transmissibility is that natural selection favors variants with higher rates of viral aerosol shedding. However, the extent of aerosol shedding of successive SARS-CoV-2 variants is unknown. We aimed to measure the infectivity and rate of SARS-CoV-2 shedding into exhaled breath aerosol (EBA) by individuals during the Delta and Omicron waves and compared those rates with those of prior SARS-CoV-2 variants from our previously published work. METHODS: COVID-19 cases (n = 93, 32 vaccinated and 20 boosted) were recruited to give samples, including 30-minute breath samples into a Gesundheit-II exhaled breath aerosol sampler. Samples were quantified for viral RNA using RT-PCR and cultured for virus. RESULTS: Alpha (n = 4), Delta (n = 3), and Omicron (n = 29) cases shed significantly more viral RNA copies into exhaled breath aerosols than cases infected with ancestral strains and variants not associated with increased transmissibility (n = 57). All Delta and Omicron cases were fully vaccinated and most Omicron cases were boosted. We cultured virus from the EBA of one boosted and three fully vaccinated cases. CONCLUSIONS: Alpha, Delta, and Omicron independently evolved high viral aerosol shedding phenotypes, demonstrating convergent evolution. Vaccinated and boosted cases can shed infectious SARS-CoV-2 via EBA. These findings support a dominant role of infectious aerosols in transmission of SARS-CoV-2. Monitoring aerosol shedding from new variants and emerging pathogens can be an important component of future threat assessments and guide interventions to prevent transmission.

6.
Int J Infect Dis ; 131: 19-25, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2283448

ABSTRACT

OBJECTIVES: As the world transitions to COVID-19 endemicity, studies focusing on aerosol shedding of highly transmissible SARS-CoV-2 variants of concern (VOCs) are vital for the calibration of infection control measures against VOCs that are likely to circulate seasonally. This follow-up Gesundheit-II aerosol sampling study aims to compare the aerosol shedding patterns of Omicron VOC samples with pre-Omicron variants analyzed in our previous study. DESIGN: Coarse and fine aerosol samples from 47 patients infected with SARS-CoV-2 were collected during various respiratory activities (passive breathing, talking, and singing) and analyzed using reverse transcription-quantitative polymerase chain reaction and virus culture. RESULTS: Compared with patients infected with pre-Omicron variants, comparable SARS-CoV-2 RNA copy numbers were detectable in aerosol samples of patients infected with Omicron despite being fully vaccinated. Patients infected with Omicron also showed a slight increase in viral aerosol shedding during breathing activities and were more likely to have persistent aerosol shedding beyond 7 days after disease onset. CONCLUSION: This follow-up study reaffirms the aerosol shedding properties of Omicron and should guide continued layering of public health interventions even in highly vaccinated populations.


Subject(s)
COVID-19 , Humans , Follow-Up Studies , RNA, Viral , SARS-CoV-2
7.
IEEE J Biomed Health Inform ; PP2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2233076

ABSTRACT

Peripheral blood oxygen saturation (SpO 2) is an essential indicator of respiratory functionality and received increasing attention during the COVID-19 pandemic. Clinical findings show that COVID-19 patients can have significantly low SpO 2 before any obvious symptoms. Measuring an individual's SpO 2 without having to come into contact with the person can lower the risk of cross contamination and blood circulation problems. The prevalence of smartphones has motivated researchers to investigate methods for monitoring SpO 2 using smartphone cameras. Most prior schemes involving smartphones are contact-based: They require using a fingertip to cover the phone's camera and the nearby light source to capture reemitted light from the illuminated tissue. In this paper, we propose the first convolutional neural network based noncontact SpO 2 estimation scheme using smartphone cameras. The scheme analyzes the videos of an individual's hand for physiological sensing, which is convenient and comfortable for users and can protect their privacy and allow for keeping face masks on. We design explainable neural network architectures inspired by the optophysiological models for SpO 2 measurement and demonstrate the explainability by visualizing the weights for channel combination. Our proposed models outperform the state-of-the-art model that is designed for contact-based SpO 2 measurement, showing the potential of the proposed method to contribute to public health. We also analyze the impact of skin type and the side of a hand on SpO 2 estimation performance.

8.
Clin Infect Dis ; 75(1): e241-e248, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2017760

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemiology implicates airborne transmission; aerosol infectiousness and impacts of masks and variants on aerosol shedding are not well understood. METHODS: We recruited coronavirus disease 2019 (COVID-19) cases to give blood, saliva, mid-turbinate and fomite (phone) swabs, and 30-minute breath samples while vocalizing into a Gesundheit-II, with and without masks at up to 2 visits 2 days apart. We quantified and sequenced viral RNA, cultured virus, and assayed serum samples for anti-spike and anti-receptor binding domain antibodies. RESULTS: We enrolled 49 seronegative cases (mean days post onset 3.8 ±â€…2.1), May 2020 through April 2021. We detected SARS-CoV-2 RNA in 36% of fine (≤5 µm), 26% of coarse (>5 µm) aerosols, and 52% of fomite samples overall and in all samples from 4 alpha variant cases. Masks reduced viral RNA by 48% (95% confidence interval [CI], 3 to 72%) in fine and by 77% (95% CI, 51 to 89%) in coarse aerosols; cloth and surgical masks were not significantly different. The alpha variant was associated with a 43-fold (95% CI, 6.6- to 280-fold) increase in fine aerosol viral RNA, compared with earlier viruses, that remained a significant 18-fold (95% CI, 3.4- to 92-fold) increase adjusting for viral RNA in saliva, swabs, and other potential confounders. Two fine aerosol samples, collected while participants wore masks, were culture-positive. CONCLUSIONS: SARS-CoV-2 is evolving toward more efficient aerosol generation and loose-fitting masks provide significant but only modest source control. Therefore, until vaccination rates are very high, continued layered controls and tight-fitting masks and respirators will be necessary.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , Masks , RNA, Viral , Respiratory Aerosols and Droplets
9.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.27.22278121

ABSTRACT

Aerosol inhalation is increasingly well recognized as a major if not primary mode of transmission of SARS-CoV-21,2. Over the course of the COVID-19 pandemic, three highly transmissible lineages evolved and became globally dominant3. One hypothesis to explain increased transmissibility is that natural selection favours variants with higher rates of viral aerosol shedding. However, the extent of aerosol shedding of successive SARS-CoV-2 variants is unknown. Here, we demonstrate that viral shedding (measured as RNA copies) into exhaled breath aerosol was significantly greater during infections with Alpha, Delta, and Omicron than with ancestral strains and variants not associated with increased transmissibility. The three highly transmissible variants independently evolved a high viral aerosol shedding phenotype, demonstrating convergent evolution. We did not observe statistically significant differences in rates of shedding between Alpha, Delta, and Omicron infections. The highest shedder in our study, however, had an Omicron infection and shed three orders of magnitude more viral RNA copies than the maximum observed for Delta and Alpha4. Our results also show that fully vaccinated and boosted individuals, when infected, can shed infectious SARS-CoV-2 via exhaled breath aerosols. These findings provide additional evidence that inhalation of infectious aerosols is the dominant mode of transmission and emphasize the importance of ventilation, filtration, and air disinfection to mitigate the pandemic and protect vulnerable populations. We anticipate that monitoring aerosol shedding from new SARS-CoV-2 variants and emerging pathogens will be an important component of future threat assessments and will help guide interventions to prevent transmission via inhalation exposure.

10.
Indoor Air ; 32(6): e13064, 2022 06.
Article in English | MEDLINE | ID: covidwho-1909399

ABSTRACT

The exhalation of aerosols during musical performances or rehearsals posed a risk of airborne virus transmission in the COVID-19 pandemic. Previous research studied aerosol plumes by only focusing on one risk factor, either the source strength or convective transport capability. Furthermore, the source strength was characterized by the aerosol concentration and ignored the airflow rate needed for risk analysis in actual musical performances. This study characterizes aerosol plumes that account for both the source strength and convective transport capability by conducting experiments with 18 human subjects. The source strength was characterized by the source aerosol emission rate, defined as the source aerosol concentration multiplied by the source airflow rate (brass 383 particle/s, singing 408 particle/s, and woodwind 480 particle/s). The convective transport capability was characterized by the plume influence distance, defined as the sum of the horizontal jet length and horizontal instrument length (brass 0.6 m, singing 0.6 m and woodwind 0.8 m). Results indicate that woodwind instruments produced the highest risk with approximately 20% higher source aerosol emission rates and 30% higher plume influence distances compared with the average of the same risk indicators for singing and brass instruments. Interestingly, the clarinet performance produced moderate source aerosol concentrations at the instrument's bell, but had the highest source aerosol emission rates due to high source airflow rates. Flute performance generated plumes with the lowest source aerosol emission rates but the highest plume influence distances due to the highest source airflow rate. Notably, these comprehensive results show that the source airflow is a critical component of the risk of airborne disease transmission. The effectiveness of masking and bell covering in reducing aerosol transmission is due to the mitigation of both source aerosol concentrations and plume influence distances. This study also found a musician who generated approximately five times more source aerosol concentrations than those of the other musicians who played the same instrument. Despite voice and brass instruments producing measurably lower average risk, it is possible to have an individual musician produce aerosol plumes with high source strength, resulting in enhanced transmission risk; however, our sample size was too small to make generalizable conclusions regarding the broad musician population.


Subject(s)
Air Pollution, Indoor , COVID-19 , Respiratory Aerosols and Droplets , Singing , Aerosols/analysis , Air Pollution, Indoor/analysis , COVID-19/transmission , Humans , Music , Pandemics , Respiratory Aerosols and Droplets/virology
11.
ACS Environ Au ; 1(1): 71-84, 2021 Nov 17.
Article in English | MEDLINE | ID: covidwho-1878488

ABSTRACT

Outbreaks from choir performances, such as the Skagit Valley Choir, showed that singing brings potential risk of COVID-19 infection. There is less known about the risks of airborne infection from other musical performances, such as playing wind instruments or performing theater. In addition, it is important to understand methods that can be used to reduce infection risk. In this study, we used a variety of methods, including flow visualization, aerosol and CO2 measurements, and computational fluid dynamics (CFD) modeling to understand the different components that can lead to transmission risk from musical performance and risk mitigation. This study was possible because of a partnership across academic departments and institutions and collaboration with the National Federation of State High School Associations and the College Band Directors National Association. The interdisciplinary team enabled us to understand the various aspects of aerosol transmission risk from musical performance and to quickly implement strategies in music classrooms during the COVID-19 pandemic. We found that plumes from musical performance were highly directional, unsteady and varied considerably in time and space. Aerosol number concentration measured at the bell of the clarinet was comparable to that of singing. Face and bell masks attenuated plume velocities and lengths and decreased aerosol concentrations measured in front of the masks. CFD modeling showed differences between indoor and outdoor environments and that the lowest risk of airborne COVID-19 infection occurred at less than 30 min of exposure indoors and less than 60 min outdoors.

12.
Am J Hypertens ; 35(7): 596-600, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1784302

ABSTRACT

BACKGROUND: Clinical practices can use telemedicine and other strategies (e.g., self-measured blood pressure [SMBP]) for remote monitoring of hypertension to promote control while decreasing risk of exposure to SARS-CoV-2, the virus that causes COVID-19. METHODS: The DocStyles survey collected data from primary care providers (PCPs), obstetricians-gynecologists (OB/GYNs), and nurse practitioners/physician assistants (NP/PAs) in fall 2020 (n = 1,502). We investigated clinical practice changes for monitoring hypertension that were implemented early in the COVID-19 pandemic and examined differences by clinician and practice characteristics (P < 0.05). RESULTS: Overall, 369 (24.6%) of clinicians reported their clinical practices made no changes in monitoring hypertension early in the pandemic, 884 (58.9%) advised patients to monitor blood pressure at home or a pharmacy, 699 (46.5%) implemented or increased use of telemedicine for blood pressure monitoring visits, and 545 (36.3%) reduced the frequency of office visits for blood pressure monitoring. Compared with NP/PAs, PCPs were more likely to advise SMBP monitoring (adjusted prevalence ratios [aPR] 1.28, 95% confidence intervals [CI] 1.11-1.47), implement or increase use of telemedicine (aPR 1.23, 95% CI 1.04-1.46), and reduce the frequency of office visits (aPR 1.37, 95% CI 1.11-1.70) for blood pressure monitoring, and less likely to report making no practice changes (aPR 0.63, 95% CI 0.51-0.77). CONCLUSIONS: We noted variation in clinical practice changes by clinician type and practice characteristics. Clinical practices may need additional support and resources to fully maximize telemedicine and other strategies for remote monitoring of hypertension during pandemics and other emergencies that can disrupt routine health care.


Subject(s)
COVID-19 , Hypertension , Telemedicine , COVID-19/epidemiology , Humans , Hypertension/diagnosis , Hypertension/epidemiology , Pandemics/prevention & control , SARS-CoV-2
13.
Cardiovascular Journal of Africa ; 33(SUPPL):61, 2021.
Article in English | EMBASE | ID: covidwho-1766887

ABSTRACT

Introduction: Studies show that children account for only 1-5% of diagnosed COVID-19 cases, they have milder disease than adults and deaths are extremely rare. The complete clinical picture of pediatric COVID-19 has not yet been fully reported or defined. Additionally, the South African pediatric population has unique clinical characteristics and risk implications and needs investigating. We aimed to characterize COVID-19 in Cape Town children. Methods: The UCT COVID-19 pediatric repository is a prospective cohort recruited via convenience sampling at 3 Western Cape Hospitals. All patients ≤ 18 years who test COVID-19 positive are eligible for inclusion in the study. Results: To date 227 participants, 56%(125/227) male with median age 2 years (IQR:0-6), have been enrolled. Only 28(12%) participants were in contact with a confirmed COVID-19 positive case, 67% of these, were first degree relatives, 28% second degree relatives and 6% health care workers. Comorbidities were present in 125(56%) participants. Of 32 recorded comorbidities, congenital heart disease (CHD), found in 7% of participants, ranked third. CHD subtypes included PDA (4), Tetralogy of Fallot (3), AVSD (2), Pulmonary atresia with VSD (2), truncus arteriosus (1), Coarctation of the Aorta (1), Congenital aortic valve stenosis (1), and ASD (1). Other cardiac comorbidities were, cardiomyopathy (2), primary pulmonary hypertension (1) and rhabdomyoma (1). On presentation 173 (76%) were symptomatic. Predominant symptoms included cough 40%, history of fever 36%, documented fever 34%, difficulty breathing 28%, and nausea or vomiting 20%. On examination, 65% had abnormal heart rates, 47% abnormal respiratory rates, 35% were in respiratory distress and 24% were hypoxic. Of the 227 patients, 169(74%) were admitted to hospital and 33 (15%) were admitted to ICU. In the ICU 79% of patients required non-invasive and 24% invasive ventilation, median length of ICU admission was 3 days (IQR:2-7.5). During admission 38(17%) patients developed COVID-19 complications: secondary infection 10%, sepsis 4%, MIS-C 2%, and myocarditis or new onset heart failure 1%) and 2(0.9%) died, including one patient with AVSD, who presented with severe pulmonary hypertension and acute heart failure post cardiac surgery. Conclusion: We present the initial findings of the UCT pediatric COVID-19 registry. We anticipate that these data will help to complete the clinical picture of COVID-19 in the South African pediatric population.

14.
Microbiol Spectr ; 10(2): e0012822, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1752767

ABSTRACT

Saliva is an attractive sample for detecting SARS-CoV-2. However, contradictory reports exist concerning the sensitivity of saliva versus nasal swabs. We followed close contacts of COVID-19 cases for up to 14 days from the last exposure and collected self-reported symptoms, midturbinate swabs (MTS), and saliva every 2 or 3 days. Ct values, viral load, and frequency of viral detection by MTS and saliva were compared. Fifty-eight contacts provided 200 saliva-MTS pairs, and 14 contacts (13 with symptoms) had one or more positive samples. Saliva and MTS had similar rates of viral detection (P = 0.78) and substantial agreement (κ = 0.83). However, sensitivity varied significantly with time since symptom onset. Early on (days -3 to 2), saliva had 12 times (95% CI: 1.2, 130) greater likelihood of viral detection and 3.2 times (95% CI: 2.8, 3.8) higher RNA copy numbers compared to MTS. After day 2 of symptoms, there was a nonsignificant trend toward greater sensitivity using MTS. Saliva and MTS demonstrated high agreement making saliva a suitable alternative to MTS for SARS-CoV-2 detection. Saliva was more sensitive early in the infection when the transmission was most likely to occur, suggesting that it may be a superior and cost-effective screening tool for COVID-19. IMPORTANCE The findings of this manuscript are increasingly important with new variants that appear to have shorter incubation periods emerging, which may be more prone to detection in saliva before detection in nasal swabs. Therefore, there is an urgent need to provide the science to support the use of a detection method that is highly sensitive and widely acceptable to the public to improve screening rates and early detection. The manuscript presents the first evidence that saliva-based RT-PCR is more sensitive than MTS-based RT-PCR in detecting SARS-CoV-2 during the presymptomatic period - the critical period for unwitting onward transmission. Considering other advantages of saliva samples, including the lower cost, greater acceptability within the general population, and less risk to health care workers, our findings further supported the use of saliva to identify presymptomatic infection and prevent transmission of the virus.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Nasopharynx , SARS-CoV-2/genetics , Saliva , Specimen Handling/methods
15.
Clin Infect Dis ; 74(10): 1722-1728, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1707710

ABSTRACT

BACKGROUND: Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) superspreading events suggest that aerosols play an important role in driving the coronavirus disease 2019 (COVID-19) pandemic. To better understand how airborne SARS-CoV-2 transmission occurs, we sought to determine viral loads within coarse (>5 µm) and fine (≤5 µm) respiratory aerosols produced when breathing, talking, and singing. METHODS: Using a G-II exhaled breath collector, we measured viral RNA in coarse and fine respiratory aerosols emitted by COVID-19 patients during 30 minutes of breathing, 15 minutes of talking, and 15 minutes of singing. RESULTS: Thirteen participants (59%) emitted detectable levels of SARS-CoV-2 RNA in respiratory aerosols, including 3 asymptomatic and 1 presymptomatic patient. Viral loads ranged from 63-5821 N gene copies per expiratory activity per participant, with high person-to-person variation. Patients earlier in illness were more likely to emit detectable RNA. Two participants, sampled on day 3 of illness, accounted for 52% of total viral load. Overall, 94% of SARS-CoV-2 RNA copies were emitted by talking and singing. Interestingly, 7 participants emitted more virus from talking than singing. Overall, fine aerosols constituted 85% of the viral load detected in our study. Virus cultures were negative. CONCLUSIONS: Fine aerosols produced by talking and singing contain more SARS-CoV-2 copies than coarse aerosols and may play a significant role in SARS-CoV-2 transmission. Exposure to fine aerosols, especially indoors, should be mitigated. Isolating viable SARS-CoV-2 from respiratory aerosol samples remains challenging; whether this can be more easily accomplished for emerging SARS-CoV-2 variants is an urgent enquiry necessitating larger-scale studies.


Subject(s)
COVID-19 , Singing , Aerosols , Humans , RNA, Viral/genetics , Respiratory Aerosols and Droplets , SARS-CoV-2 , Viral Load
16.
J Intellect Disabil Res ; 66(4): 313-322, 2022 04.
Article in English | MEDLINE | ID: covidwho-1699726

ABSTRACT

BACKGROUND: The world has suffered immeasurably during the COVID-19 pandemic. Increased distress and mental and medical health concerns are collateral consequences to the disease itself. The Genes to Mental Health (G2MH) Network consortium sought to understand how individuals affected by the rare copy number variations of 22q11.2 deletion and duplication syndrome, associated with neurodevelopmental/neuropsychiatric conditions, were coping. The article focuses on worry and disruptions in medical care caused by the pandemic. METHODS: The University of Pennsylvania COVID-19 Stressor List and care disruption questions were circulated by 22 advocacy groups in English and 11 other languages. RESULTS: A total of 512 people from 23 countries completed the survey; most were caregivers of affected individuals. Worry about family members acquiring COVID-19 had the highest average endorsed worry, whilst currently having COVID-19 had the lowest rated worry. Total COVID-19 worries were higher in individuals completing the survey towards the end of the study (later pandemic wave); 36% (n = 186) of the sample reported a significant effect on health due to care interruption during the pandemic; 44% of individuals (n = 111) receiving care for their genetic syndrome in a hospital setting reported delaying appointments due to COVID-19 fears; 12% (n = 59) of the sample reported disruptions to treatments; and of those reporting no current disruptions, 59% (n = 269) worried about future disruptions if the pandemic continued. Higher levels of care disruptions were related to higher COVID-19 worries (Ps < 0.005). Minimal differences by respondent type or copy number variation type emerged. CONCLUSIONS: Widespread medical care disruptions and pandemic-related worries were reported by individuals with 22q11.2 syndrome and their family members. Reported worries were broadly consistent with research results from prior reports in the general population. The long-term effects of COVID-19 worries, interruptions to care and hospital avoidance require further study.


Subject(s)
COVID-19 , DNA Copy Number Variations , Caregivers , Chromosomes , Humans , Pandemics
17.
Clin Infect Dis ; 73(11): e3983-e3984, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1575091
18.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.01.21267147

ABSTRACT

Background: Saliva is an attractive sample for detecting SARS-CoV-2 because it is easy to collect and minimally invasive. However, contradictory reports exist concerning the sensitivity of saliva versus nasal swabs. Methods: We recruited and followed close contacts of COVID-19 cases for up to 14 days from their last exposure and collected self-reported symptoms, mid-turbinate swabs (MTS) and saliva every two or three days. Ct values and frequency of viral detection by MTS and saliva were compared. Logistic regression was used to estimate the probability of detection by days since symptom onset for the two sample types. Results: We enrolled 58 contacts who provided a total of 200 saliva and MTS sample pairs; 14 contacts (13 with symptoms) had one or more positive samples. Overall, saliva and MTS had similar rates of viral detection (p=0.78). Although Ct values for saliva were significantly greater than for MTS (p=0.014), Cohen's Kappa demonstrated substantial agreement ({kappa}=0.83). However, sensitivity varied significantly with time relative to symptom onset. Early in the course of infection (days -3 to 2), saliva had 12 times (95%CI: 1.2, 130) greater likelihood of detecting viral RNA compared to MTS. After day 2, there was a non-significant trend to greater sensitivity using MTS samples. Conclusion: Saliva and MTS specimens demonstrated high agreement, making saliva a suitable alternative to MTS nasal swabs for COVID-19 detection. Furthermore, saliva was more sensitive than MTS early in the course of infection, suggesting that it may be a superior and cost-effective screening tool for COVID-19.

19.
Front Public Health ; 9: 747894, 2021.
Article in English | MEDLINE | ID: covidwho-1528873

ABSTRACT

Eighteen months into the COVID-19 pandemic, and as the world struggles with global vaccine equity, emerging variants, and the reality that eradication is years away at soonest, we add to notion of "layered defenses" proposing a conceptual model for better understanding the differential applicability and effectiveness of precautions against SARS-CoV-2 transmission. The prevailing adaptation of Reason's Swiss cheese model conceives of all defensive layers as equally protective, when in reality some are more effective than others. Adapting the hierarchy of controls framework from occupational safety provides a better framework for understanding the relative benefit of different hazard control strategies to minimize the spread of SARS-CoV-2.


Subject(s)
COVID-19 , Occupational Health , Humans , Pandemics/prevention & control , SARS-CoV-2 , Safety Management
20.
Biosens Bioelectron ; 197: 113803, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1517063

ABSTRACT

We report the rapid detection of SARS-CoV-2 in infected patients (mid-turbinate swabs and exhaled breath aerosol samples) in concentrations as low as 60 copies/mL of the virus in seconds by electrical transduction of the SARS-CoV-2 S1 spike protein antigen via SARS-CoV-2 S1 spike protein antibodies immobilized on bilayer quasi-freestanding epitaxial graphene without gate or signal amplification. The sensor demonstrates the spike protein antigen detection in a concentration as low as 1 ag/mL. The heterostructure of the SARS-CoV-2 antibody/graphene-based sensor is developed through a simple and low-cost fabrication technique. Furthermore, sensors integrated into a portable testing unit distinguished B.1.1.7 variant positive samples from infected patients (mid-turbinate swabs and saliva samples, 4000-8000 copies/mL) with a response time of as fast as 0.6 s. The sensor is reusable, allowing for reimmobilization of the crosslinker and antibodies on the biosensor after desorption of biomarkers by NaCl solution or heat treatment above 40 °C.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL