Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Immunity, inflammation and disease ; 10(6), 2022.
Article in English | EuropePMC | ID: covidwho-1863782

ABSTRACT

Background To determine the kinetics and persistence of immune responses following the Sinopharm/BBIBP‐CorV, we investigated immune responses in a cohort of Sri Lankan individuals. Methods SARS‐CoV‐2 specific total antibodies were measured in 20–39 years (n = 61), 40–59 years (n = 120) and those >60 years of age (n = 22) by enzyme‐linked immunosorbent assay, 12 weeks after the second dose of the vaccine. Angiotensin‐converting enzyme 2 (ACE2) receptor blocking antibodies (ACE2R‐Ab), antibodies to the receptor‐binding domain (RBD) of the ancestral virus (WT) and variants of concern, were measured in a sub cohort. T cell responses and memory B cell responses were assessed by ELISpot assays. Results A total of 193/203 (95.07%) of individuals had detectable SARS‐CoV‐2 specific total antibodies, while 67/110 (60.9%) had ACE2R‐Ab. A total of 14.3%–16.7% individuals in the 20–39 age groups had detectable antibodies to the RBD of the WT and variants of concern, while the positivity rates of those ≥60 years of age was <10%. A total of 14/49 (28.6%) had Interferon gamma ELISpot responses to overlapping peptides of the spike protein, while memory B cell responses were detected in 9/20 to the S1 recombinant protein. The total antibody levels and ACE2R‐Ab declined from 2 to 12 weeks from the second dose, while ex vivo T cell responses remained unchanged. The decline in ACE2R‐Ab levels was significant among the 40–59 (p = .0007) and ≥60 (p = .005) age groups. Conclusions Antibody responses declined in all age groups, especially in those ≥60 years, while T cell responses persisted. The effect of waning of immunity on hospitalization and severe disease should be assessed by long term efficacy studies. We have described the immune responses to the Sinopharm/BBIBP‐CorV vaccine, 12 weeks following the second dose of the vaccine. We show that while the SARS‐CoV‐2 specific total antibodies, and especially ACE2 receptor blocking antibodies and antibodies to the RBD significantly decline, the memory T cell and B cell responses persisted. Since the ACE2 receptor blocking antibodies was shown to significantly decline in all age groups and especially in the elderly.

2.
Immun Inflamm Dis ; 10(6): e621, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1850062

ABSTRACT

BACKGROUND: To determine the kinetics and persistence of immune responses following the Sinopharm/BBIBP-CorV, we investigated immune responses in a cohort of Sri Lankan individuals. METHODS: SARS-CoV-2 specific total antibodies were measured in 20-39 years (n = 61), 40-59 years (n = 120) and those >60 years of age (n = 22) by enzyme-linked immunosorbent assay, 12 weeks after the second dose of the vaccine. Angiotensin-converting enzyme 2 (ACE2) receptor blocking antibodies (ACE2R-Ab), antibodies to the receptor-binding domain (RBD) of the ancestral virus (WT) and variants of concern, were measured in a sub cohort. T cell responses and memory B cell responses were assessed by ELISpot assays. RESULTS: A total of 193/203 (95.07%) of individuals had detectable SARS-CoV-2 specific total antibodies, while 67/110 (60.9%) had ACE2R-Ab. A total of 14.3%-16.7% individuals in the 20-39 age groups had detectable antibodies to the RBD of the WT and variants of concern, while the positivity rates of those ≥60 years of age was <10%. A total of 14/49 (28.6%) had Interferon gamma ELISpot responses to overlapping peptides of the spike protein, while memory B cell responses were detected in 9/20 to the S1 recombinant protein. The total antibody levels and ACE2R-Ab declined from 2 to 12 weeks from the second dose, while ex vivo T cell responses remained unchanged. The decline in ACE2R-Ab levels was significant among the 40-59 (p = .0007) and ≥60 (p = .005) age groups. CONCLUSIONS: Antibody responses declined in all age groups, especially in those ≥60 years, while T cell responses persisted. The effect of waning of immunity on hospitalization and severe disease should be assessed by long term efficacy studies.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , Humans , Infant , Middle Aged , SARS-CoV-2
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-333124

ABSTRACT

Viral CD8 + epitopes are generated by the cellular turnover of viral proteins, predominantly by the proteasome. Mutations located within viral epitopes can result in escape from memory T cells but the contribution of mutations in flanking regions of epitopes in SARS-CoV-2 has not been investigated. Focusing on two of the most dominant SARS-CoV-2 nucleoprotein CD8 + epitopes, we identified mutations in epitope flanking regions and investigated the contribution of these mutations to antigen processing and T cell activation using SARS-CoV-2 nucleoprotein transduced B cell lines and in vitro proteasomal processing of peptides. We found that decreased NP 9-17 -B*27:05 CD8 + T cell responses to the NP-Q7K mutation correlated with lower epitope surface expression, likely due to a lack of efficient epitope production by the proteasome, suggesting immune escape caused by this mutation. In contrast, NP-P6L and NP-D103N/Y mutations flanking the NP 9-17 -B*27:05 and NP 105-113 -B*07:02 epitopes, respectively, increased CD8 + T cell responses associated with enhanced epitope production by the proteasome. Our results provide evidence that SARS-CoV-2 mutations outside the epitope could have a significant impact on antigen processing and presentation, thereby contributing to escape from immunodominant T cell responses. Alternatively, mutations could enhance antigen processing and efficacy of T cell recognition, opening new avenues for improving future vaccine designs. One Sentence Summary Natural mutations in the flanking regions of known immunodominant SARS-CoV-2 nucleoprotein epitopes can decrease CD8 + T cell responses leading to partial escape.

4.
Immun Inflamm Dis ; 10(4): e592, 2022 04.
Article in English | MEDLINE | ID: covidwho-1763237

ABSTRACT

BACKGROUND: To understand the kinetics of immune responses with different dosing gaps of the AZD1222 vaccine, we compared antibody and T cell responses in two cohorts with two different dosing gaps. METHODS: Antibodies to the SARS-CoV-2 virus were assessed in 297 individuals with a dosing gap of 12 weeks, sampled 12 weeks post second dose (cohort 1) and in 77 individuals with a median dosing gap of 21.4 weeks (cohort 2) sampled 6 weeks post second dose. ACE2-blocking antibodies (ACE2-blocking Abs), antibodies to the receptor-binding domain (RBD) of  variants of concern (VOC), and ex vivo T cell responses were assessed in a subcohort. RESULTS: All individuals (100%) had SARS-CoV-2-specific total antibodies and 94.2% of cohort 1 and 97.1% of cohort 2 had ACE2-blocking Abs. There was no difference in antibody titers or positivity rates in different age groups in both cohorts. The ACE2-blocking Abs (p < .0001) and antibodies to the RBD of the VOCs were significantly higher in cohort 2 compared to cohort 1. 41.2% to 65.8% of different age groups gave a positive response by the hemagglutination assay to the RBD of the ancestral virus and VOCs in cohort 1, while 53.6%-90% gave a positive response in cohort 2. 17/57 (29.8%) of cohort 1 and 17/29 (58.6%) of cohort 2 had ex vivo interferon (IFN)γ ELISpot responses above the positive threshold. The ACE2-blocking antibodies (Spearman's r = .46, p = .008) and ex vivo IFNγ responses (Spearman's r = .71, p < .0001) at 12 weeks post first dose, significantly correlated with levels 12 weeks post second dose. CONCLUSIONS: Both dosing schedules resulted in high antibody and T cell responses post vaccination, although those with a longer dosing gap had a higher magnitude of responses, possibly as immune responses were measured 6 weeks post second dose compared to 12 weeks post second dose.


Subject(s)
COVID-19 , Vaccines , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunity , Kinetics , SARS-CoV-2 , Sri Lanka
5.
Lancet Microbe ; 3(5): e348-e356, 2022 05.
Article in English | MEDLINE | ID: covidwho-1758021

ABSTRACT

Background: The memory immune response is crucial for preventing reinfection or reducing disease severity. However, the robustness and functionality of the humoral and T-cell response to SARS-CoV-2 remains unknown 12 months after initial infection. The aim of this study is to investigate the durability and functionality of the humoral and T-cell response to the original SARS-CoV-2 strain and variants in recovered patients 12 months after infection. Methods: In this longitudinal cohort study, we recruited participants who had recovered from COVID-19 and who were discharged from the Wuhan Research Center for Communicable Disease Diagnosis and Treatment at the Chinese Academy of Medical Sciences, Wuhan, China, between Jan 7 and May 29, 2020. Patients received a follow-up visit between Dec 16, 2020, and Jan 27, 2021. We evaluated the presence of IgM, IgA, and IgG antibodies against the SARS-CoV-2 nucleoprotein, Spike protein, and the receptor-binding domain 12 months after initial infection, using ELISA. Neutralising antibodies against the original SARS-CoV-2 strain, and the D614G, beta (B.1.351), and delta (B.1.617.2) variants were analysed using a microneutralisation assay in a subset of plasma samples. We analysed the magnitude and breadth of the SARS-CoV-2-specific memory T-cell responses using the interferon γ (IFNγ) enzyme-linked immune absorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) assay. The antibody response and T-cell response (ie, IFN-γ, interleukin-2 [IL-2], and tumour necrosis factor α [TNFα]) were analysed by age and disease severity. Antibody titres were also analysed according to sequelae symptoms. Findings: We enrolled 1096 patients, including 289 (26·4%) patients with moderate initial disease, 734 (67·0%) with severe initial disease, and 73 (6·7%) with critical initial disease. Paired plasma samples were collected from 141 patients during the follow-up visits for the microneutralisation assay. PBMCs were collected from 92 of 141 individuals at the 12-month follow-up visit, of which 80 were analysed by ELISpot and 92 by ICS assay to detect the SARS-CoV-2-specific memory T-cell responses. N-IgG (899 [82·0%]), S-IgG (1043 [95·2%]), RBD-IgG (1032 [94·2%]), and neutralising (115 [81·6%] of 141) antibodies were detectable 12 months after initial infection in most individuals. Neutralising antibodies remained stable 6 and 12 months after initial infection in most individuals younger than 60 years. Multifunctional T-cell responses were detected for all SARS-CoV-2 viral proteins tested. There was no difference in the magnitude of T-cell responses or cytokine profiles in individuals with different symptom severity. Moreover, we evaluated both antibody and T-cell responses to the D614G, beta, and delta viral strains. The degree of reduced in-vitro neutralising antibody responses to the D614G and delta variants, but not to the beta variant, was associated with the neutralising antibody titres after SARS-CoV-2 infection. We also found poor neutralising antibody responses to the beta variant; 83 (72·2%) of 115 patients showed no response at all. Moreover, the neutralising antibody titre reduction of the recovered patient plasma against the delta variant was similar to that of the D614G variant and lower than that of the beta variant. By contrast, T-cell responses were cross-reactive to the beta variant in most individuals. Importantly, T-cell responses could be detected in all individuals who had lost the neutralising antibody response to SARS-CoV-2 12 months after the initial infection. Interpretation: SARS-CoV-2-specific neutralising antibody and T-cell responses were retained 12 months after initial infection. Neutralising antibodies to the D614G, beta, and delta viral strains were reduced compared with those for the original strain, and were diminished in general. Memory T-cell responses to the original strain were not disrupted by new variants. This study suggests that cross-reactive SARS-CoV-2-specific T-cell responses could be particularly important in the protection against severe disease caused by variants of concern whereas neutralising antibody responses seem to reduce over time. Funding: Chinese Academy of Medical Sciences, National Natural Science Foundation, and UK Medical Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , Cohort Studies , Cytokines , Humans , Immunoglobulin G , Longitudinal Studies , T-Lymphocytes
6.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-328783

ABSTRACT

Little is known of the role of cytotoxic CD4 + T-cells in the control of viral replication. Here, we investigate CD4 + T-cell responses to three dominant SARS-CoV-2 epitopes and evaluate antiviral activity, including cytotoxicity and antiviral cytokine production. Diverse T cell receptor (TCR) usage including public TCRs were identified;surprisingly, cytotoxic CD4 + T-cells were found to have signalling and cytotoxic pathways distinct from classical CD8 + T-cells, with increased expression of chemokines and tissue homing receptors promoting migration. We show the presence of cytolytic CD4 + T-cells during primary infection associates with COVID-19 disease severity. Robust immune memory 6-9 months post-infection or vaccination provides CD4 + T-cells with potent antiviral activity. Our data support a model where CD4 + killer cells drive immunopathogenesis during primary infection and CD4 + memory responses are protective during secondary infection. Our study highlights the unique features of cytotoxic CD4 + T-cells that use distinct functional pathways, providing preventative and therapeutic opportunities.

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313281

ABSTRACT

Background: As the first dose of Sputnik V Gam-COVID-Vac, is currently used as a single dose vaccine in some countries, we investigated the immunogenicity of a single dose of this vaccine in Sri Lankan adults at 4 weeks and compared the immune responses with our previously published data following AZD1222.Methods: SARS-CoV-2 antibodies were assessed at 504 individuals at the time of recruitment and at 4 weeks since receiving the single dose in Sri Lankan adults. ACE2 receptor blocking antibodies, antibodies to the receptor binding domain (RBD) of variants of concern, ex vivo IFNγ ELISpot responses, intracellular cytokine assays and B cell ELISpot assays were carried out in a sub-cohort.Findings: Of the 327/504 individuals who were baseline seronegative, 88.7% seroconverted, with significantly lower seroconversion rates in those >60-years old (p-value = 0.004) and significantly lower than previously seen with AZD1222 (p=0.018). 82.6% developed ACE2 receptor blocking antibodies, although the levels were significantly lower than seen following natural infection (p=0.0009) and following a single dose of AZD1222 (p<0.0001). Similar titres of antibodies were observed to the RBD of the WT, B.1.1.7 and B.1.617.2 compared to AZD1222, while the levels for B.1.351 were significantly higher (p=0.006) for Gam-COVID-Vac. 30% of individuals developed ex vivo IFNγ ELISpot responses, and high frequency of CD107a expressing T cells along with memory B cell responses. The ex vivo IFNγ responses for spike protein were significantly higher (p<0.0001) for AZD1222 than for Gam-COVID-Vac.Interpretation: A single dose of Sputnik V Gam-COVID-Vac induced high seroconversion rates although lower responses in older age groups in Sri Lankan adults. The overall antibody responses, ACE2 receptor blocking antibody responses and ex vivo T cell responses appear to be significantly lower than previously seen with AZD1222, and so there is likely to be benefit from delivery of the second dose.Funding: We are grateful to the World Health Organization, UK Medical Research Council. theForeign and Commonwealth Office and NIH, USA (grant number 5U01AI151788-02) for support.T.K.T. is funded by the Townsend-Jeantet Charitable Trust (charity number 1011770) and the EPACephalosporin Early Career Researcher Fund.Declaration of Interest: None of the authors have any conflicts of interest.Ethical Approval: Ethics approval was obtained from the Ethics Review Committee of University of Sri Jayewardenepura (COVID 01/21).

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-309642

ABSTRACT

NP 105-113 -B*07:02 specific CD8 + T-cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP 105-113 -B*07:02 specific T-cell clones and single cell sequencing were performed concurrently, with functional avidity and anti-viral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with TCR usage, transcriptome signature, and disease severity (acute N=77, convalescent N=52). We demonstrated a beneficial association of NP 105-113 -B*07:02 specific T-cells in COVID-19 disease progression, linked with expansion of T-cell precursors, high functional avidity and anti-viral effector function. Broad immune memory pools were narrowed post-infection but NP 105-113 -B*07:02 specific T-cells were maintained 6 months after infection with preserved anti-viral efficacy to the SARS-CoV-2 Victoria strain, as well as new Alpha, Beta and Gamma variants. Our data shows that NP 105-113 -B*07:02 specific T-cell responses associate with mild disease and high anti-viral efficacy, pointing to inclusion for future vaccine design.

9.
Sci Rep ; 12(1): 1727, 2022 02 02.
Article in English | MEDLINE | ID: covidwho-1671625

ABSTRACT

As the first dose of Gam-COVID-Vac, is currently used as a single dose vaccine in some countries, we investigated the immunogenicity of this at 4 weeks (327 naïve individuals). 88.7% seroconverted, with significantly lower seroconversion rates in those over 60 years (p = 0.004) and significantly lower than previously seen with AZD1222 (p = 0.018). 82.6% developed ACE2 receptor blocking antibodies, although levels were significantly lower than following natural infection (p = 0.0009) and a single dose of AZD1222 (p < 0.0001). Similar titres of antibodies were observed to the receptor binding domain of WT, B.1.1.7 and B.1.617.2 compared to AZD1222, while the levels for B.1.351 were significantly higher (p = 0.006) for Gam-COVID-Vac. 30% developed ex vivo IFNγ ELISpot responses (significantly lower than AZD1222), and high frequency of CD107a expressing T cells along with memory B cell responses. Although single dose of Gam-COVID-Vac was highly immunogenic, administration of a second dose is likely to be beneficial.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Vaccines, Synthetic/administration & dosage , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/immunology , Biomarkers/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Female , Humans , Interferon-gamma/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/virology , Male , Middle Aged , Seroconversion , Time Factors , Treatment Outcome , Vaccines, Synthetic/immunology , Young Adult
10.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295044

ABSTRACT

Background In order to determine the immunogenicity of a single dose of the AZD1222/Covishield vaccine in a real-world situation, we assessed the immunogenicity, in a large cohort of health care workers in Sri Lanka. Methods SARS-CoV-2 antibodies was carried out in 607 naïve and 26 previously infected health care workers (HCWs) 28 to 32 days following a single dose of the vaccine. Haemagglutination test (HAT) for antibodies to the receptor binding domain (RBD) of the wild type virus, B.1.1.7, B.1.351 and the surrogate neutralization assay (sVNT) was carried out in 69 naïve and 26 previously infected individuals. Spike protein (pools S1 and S2) specific T cell responses were measured by ex vivo ELISpot IFNγ assays in 76 individuals. Results 92.9% of previously naive HCWs seroconverted to a single dose of the vaccine, irrespective of age and gender;and ACE2 blocking antibodies were detected in 67/69 (97.1%) previously naïve vaccine recipients. Although high levels of antibodies were found to the RBD of the wild type virus, the titres for B.1.1.7 and B.1.351 were lower in previously naïve HCWs. Ex vivo T cell responses were observed to S1 in 63.9% HCWs and S2 in 31.9%. The ACE2 blocking titres measured by the sVNT significantly increased (p<0.0001) from a median of 54.1 to 97.9 % of inhibition, in previously infected HCWs and antibodies to the RBD for the variants B.1.1.7 and B.1.351 also significantly increased. Discussion a single dose of the AZD1222/Covishield vaccine was shown to be highly immunogenic in previously naïve individuals inducing antibody levels greater than following natural infection. In infected individuals, a single dose induced very high levels of ACE2 blocking antibodies and antibodies to RBDs of SARS-CoV-2 variants of concern. Funding We are grateful to the World Health Organization, UK Medical Research Council and the Foreign and Commonwealth Office.

11.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-295043

ABSTRACT

Background To determine the kinetics and persistence of immune responses following the Sinopharm/BBIBP-CorV, we investigated immune responses in a cohort of Sri Lankan individuals. Methods SARS-CoV-2 specific total antibodies were measured in 20-to-39 year (n=61), 40-to-59-year and those >60 years of age (n=22) by ELISA, 12 weeks after the second dose of the vaccine. ACE2 receptor blocking antibodies (ACE2R-Ab), antibodies to the receptor binding domain (RBD) of the ancestral virus (WT) and variants of concern, were measured in a sub cohort. T cell responses and memory B cell responses were assessed by ELISpot assays. Results 193/203 (95.07%) of individuals had detectable SARS-CoV-2 specific total antibodies, while 67/110 (60.9%) had ACE2R-Ab. 14.3% to 16.7% individuals in the 20 to 39 age groups had detectable antibodies to the RBD of the WT and VOC, while the positivity rates of those >60 years of age was <10%. 14/49 (28.6%) had IFN γ ELISpot responses to overlapping peptides of the spike protein, while memory B cell responses were detected in 9/20 to the S1 recombinant protein. The total antibody levels and ACE2R-Ab declined after 2 to 12 weeks from the second dose, while ex vivo T cell responses remained unchanged. The decline in ACE2R-Ab levels was significant among the 40 to 59 (p=0.0007) and ≥60 (p=0.005) age groups. Conclusions Antibody responses declined in all age groups, especially in those >60 years, while T cell responses persisted. The effect of waning of immunity on hospitalization and severe disease should be assessed by long term efficacy studies.

12.
iScience ; 24(11): 103353, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1509904

ABSTRACT

We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.

13.
Nat Commun ; 12(1): 5839, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1454764

ABSTRACT

There is an urgent need to understand the nature of immune responses against SARS-CoV-2, to inform risk-mitigation strategies for people living with HIV (PLWH). Here we show that the majority of PLWH with ART suppressed HIV viral load, mount a detectable adaptive immune response to SARS-CoV-2. Humoral and SARS-CoV-2-specific T cell responses are comparable between HIV-positive and negative subjects and persist 5-7 months following predominately mild COVID-19 disease. T cell responses against Spike, Membrane and Nucleoprotein are the most prominent, with SARS-CoV-2-specific CD4 T cells outnumbering CD8 T cells. We further show that the overall magnitude of SARS-CoV-2-specific T cell responses relates to the size of the naive CD4 T cell pool and the CD4:CD8 ratio in PLWH. These findings suggest that inadequate immune reconstitution on ART, could hinder immune responses to SARS-CoV-2 with implications for the individual management and vaccine effectiveness in PLWH.


Subject(s)
HIV Infections/immunology , HIV Infections/virology , Immunity, Humoral , SARS-CoV-2/physiology , T-Lymphocytes/immunology , Adult , Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Formation/immunology , Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cohort Studies , Female , Genome, Human , HIV Infections/blood , Humans , Interferon-gamma/metabolism , Male , Middle Aged , Phenotype , Species Specificity , Tissue Donors
14.
Curr Opin Virol ; 50: 183-191, 2021 10.
Article in English | MEDLINE | ID: covidwho-1401390

ABSTRACT

Immunodominance is a complex and highly debated topic of T cell biology. The current SARS-CoV-2 pandemic has provided the opportunity to profile adaptive immune responses and determine molecular factors contributing to emerging responses towards immunodominant viral epitopes. Here, we discuss parameters that alter the dynamics of CD8 viral epitope processing, generation and T-cell responses, and how immunodominance counteracts viral immune escape mechanisms that develop in the context of emerging SARS-CoV-2 variants.


Subject(s)
Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Antigen Presentation , Cytosol/metabolism , Humans , Proteasome Endopeptidase Complex/physiology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/physiology , T-Lymphocytes, Cytotoxic/immunology
15.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1343152

ABSTRACT

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Binding Sites , COVID-19/therapy , COVID-19/virology , Cell Line , Humans , Immune Evasion , Immunization, Passive , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/genetics , Sequence Deletion , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines/immunology
16.
Nat Commun ; 12(1): 4617, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1333938

ABSTRACT

Several COVID-19 vaccines have received emergency approval. Here we assess the immunogenicity of a single dose of the AZD1222 vaccine, at one month, in a cohort of health care workers (HCWs) (629 naïve and 26 previously infected). 93.4% of naïve HCWs seroconverted, irrespective of age and gender. Haemagglutination test for antibodies to the receptor binding domain (RBD), surrogate neutralization assay (sVNT) and ex vivo IFNγ ELISpot assays were carried out in a sub-cohort. ACE2 blocking antibodies (measured by sVNT) were detected in 67/69 (97.1%) of naïve HCWs. Antibody levels to the RBD of the wild-type virus were higher than to RBD of B.1.1.7, and titres to B.1.351 were very low. Ex vivo T cell responses were observed in 30.8% to 61.7% in naïve HCWs. Previously infected HCWs, developed significantly higher (p < 0.0001) ACE2 blocking antibodies and antibodies to the RBD for the variants B.1.1.7 and B.1.351. This study shows high seroconversion after one vaccine dose, but also suggests that one vaccine dose may be insufficient to protect against emerging variants.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/therapeutic use , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/biosynthesis , COVID-19/prevention & control , COVID-19/virology , Dose-Response Relationship, Immunologic , Female , Health Personnel , Humans , Immunity , Male , Middle Aged , SARS-CoV-2/isolation & purification , Young Adult
17.
Cell ; 184(16): 4220-4236.e13, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1272328

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone progressive change, with variants conferring advantage rapidly becoming dominant lineages, e.g., B.1.617. With apparent increased transmissibility, variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the United Kingdom. Here we study the ability of monoclonal antibodies and convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2, complement this with structural analyses of Fab/receptor binding domain (RBD) complexes, and map the antigenic space of current variants. Neutralization of both viruses is reduced compared with ancestral Wuhan-related strains, but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2, suggesting that individuals infected previously by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insights for immunization policy with future variant vaccines in non-immune populations.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antigen-Antibody Complex/chemistry , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Chlorocebus aethiops , Crystallography, X-Ray , Humans , Immunization, Passive , Neutralization Tests , Protein Domains/immunology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
18.
Nat Commun ; 12(1): 2055, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1171493

ABSTRACT

Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Immunoassay/methods , SARS-CoV-2/physiology , T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , Cell Proliferation , Cytokines/metabolism , HEK293 Cells , Health Personnel , Humans , Immunoglobulin G/immunology , Immunologic Memory , Interferon-gamma/metabolism , Pandemics , Peptides/metabolism , SARS-CoV-2/drug effects
19.
Cell ; 184(9): 2348-2361.e6, 2021 04 29.
Article in English | MEDLINE | ID: covidwho-1095900

ABSTRACT

The race to produce vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began when the first sequence was published, and this forms the basis for vaccines currently deployed globally. Independent lineages of SARS-CoV-2 have recently been reported: UK, B.1.1.7; South Africa, B.1.351; and Brazil, P.1. These variants have multiple changes in the immunodominant spike protein that facilitates viral cell entry via the angiotensin-converting enzyme-2 (ACE2) receptor. Mutations in the receptor recognition site on the spike are of great concern for their potential for immune escape. Here, we describe a structure-function analysis of B.1.351 using a large cohort of convalescent and vaccinee serum samples. The receptor-binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal antibody neutralization largely driven by E484K, although K417N and N501Y act together against some important antibody classes. In a number of cases, it would appear that convalescent and some vaccine serum offers limited protection against this variant.


Subject(s)
COVID-19 Vaccines/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Chlorocebus aethiops , Clinical Trials as Topic , HEK293 Cells , Humans , Immunization, Passive , Models, Molecular , Mutation/genetics , Neutralization Tests , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Vero Cells
20.
Cell ; 184(8): 2201-2211.e7, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1086820

ABSTRACT

SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CHO Cells , COVID-19/epidemiology , Chlorocebus aethiops , Cricetulus , HEK293 Cells , Humans , Pandemics , Protein Binding , Structure-Activity Relationship , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL