Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
2.
BJOG ; 130(9): 1135-1144, 2023 08.
Article in English | MEDLINE | ID: covidwho-2291248

ABSTRACT

OBJECTIVE: To determine severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence in pregnancy in an inner-city setting and assess associations with demographic factors and vaccination timing. DESIGN: Repeated cross-sectional surveillance study. SETTING: London maternity centre. SAMPLE: A total of 906 pregnant women attending nuchal scans, July 2020-January 2022. METHODS: Blood samples were tested for IgG antibodies against SARS-CoV-2 nucleocapsid (N) and spike (S) proteins. Self-reported vaccination status and coronavirus disease 2019 (COVID-19) infection were recorded. Multivariable regression models determined demographic factors associated with seroprevalence and antibody titres. MAIN OUTCOME MEASURES: Immunoglobulin G N- and S-protein antibody titres. RESULTS: Of the 960 women, 196 (20.4%) were SARS-CoV-2 seropositive from previous infection. Of these, 70 (35.7%) self-reported previous infection. Among unvaccinated women, women of black ethnic backgrounds were most likely to be SARS-CoV-2 seropositive (versus white adjusted risk ratio [aRR] 1.88, 95% CI 1.35-2.61, p < 0.001). Women from black and mixed ethnic backgrounds were least likely to have a history of vaccination with seropositivity to S-protein (versus white aRR 0.58, 95% CI 0.40-0.84, p = 0.004; aRR 0.56, 95% CI 0.34-0.92, p = 0.021, respectively). Double vaccinated, previously infected women had higher IgG S-protein antibody titres than unvaccinated, previously infected women (mean difference 4.76 fold-change, 95% CI 2.65-6.86, p < 0.001). Vaccination timing before versus during pregnancy did not affect IgG S-antibody titres (mean difference -0.28 fold-change, 95% CI -2.61 to 2.04, p = 0.785). CONCLUSIONS: This cross-sectional study demonstrates high rates of asymptomatic SARS-CoV-2 infection with women of black ethnic backgrounds having higher infection risk and lower vaccine uptake. SARS-CoV-2 antibody titres were highest among double-vaccinated, infected women.


Subject(s)
COVID-19 , SARS-CoV-2 , Pregnancy , Female , Humans , Cross-Sectional Studies , Prevalence , Seroepidemiologic Studies , COVID-19/epidemiology , COVID-19/prevention & control , Antibodies, Viral , Immunoglobulin G
3.
Oxf Open Immunol ; 4(1): iqac012, 2023.
Article in English | MEDLINE | ID: covidwho-2267609

ABSTRACT

Neutralizing monoclonal antibodies (mAbs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein have been developed for the treatment of COVID-19. Whilst antibody therapy has been shown to reduce the risk of COVID-19-associated hospitalization and death, there is limited understanding of the endogenous immunity to SARS-CoV-2 generated in mAb-treated patients and therefore ongoing susceptibility to future infections. Here we measure the endogenous antibody response in SARS-CoV-2-infected individuals treated with REGN-COV2 (Ronapreve). We show that in the majority of unvaccinated, delta-infected REGN-COV2-treated individuals, an endogenous antibody response is generated, but, like untreated, delta-infected individuals, there was a limited neutralization breadth. However, some vaccinated individuals who were seronegative at SARS-CoV-2 infection baseline and some unvaccinated individuals failed to produce an endogenous immune response following infection and REGN-COV2 treatment demonstrating the importance of mAb therapy in some patient populations.

4.
Cancer Res Commun ; 2(11): 1449-1461, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2271609

ABSTRACT

This study offers longitudinal insight into the impact of three SARS-CoV-2 vaccinations on humoral and cellular immunity in patients with solid cancers, patients with hematologic malignancies, and persons without cancer. For all cohorts, virus-neutralizing immunity was significantly depleted over a period of up to 9 months following the second vaccine dose, the one striking exception being IL2 production by SARS-CoV-2 antigen-specific T cells. Immunity was restored by the third vaccine dose, except in a substantial number of patients with hematologic malignancy, for whom both cancer type and treatment schedule were associated with nonresponse. Thus, whereas most patients with myelodysplastic syndrome were conspicuously good responders, some patients with other hematologic malignancies receiving cancer therapies within 2 weeks of vaccination showed no seroconversion despite three vaccine doses. Moreover, SARS-CoV-2 exposure during the course of the study neither prevented immunity waning, even in healthy controls, nor guaranteed vaccine responsiveness. These data offer real-world human immunologic insights that can inform health policy for patients with cancer.

5.
Nat Commun ; 14(1): 1421, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2253569

ABSTRACT

SARS-CoV-2 spike glycoprotein mediates receptor binding and subsequent membrane fusion. It exists in a range of conformations, including a closed state unable to bind the ACE2 receptor, and an open state that does so but displays more exposed antigenic surface. Spikes of variants of concern (VOCs) acquired amino acid changes linked to increased virulence and immune evasion. Here, using HDX-MS, we identified changes in spike dynamics that we associate with the transition from closed to open conformations, to ACE2 binding, and to specific mutations in VOCs. We show that the RBD-associated subdomain plays a role in spike opening, whereas the NTD acts as a hotspot of conformational divergence of VOC spikes driving immune evasion. Alpha, beta and delta spikes assume predominantly open conformations and ACE2 binding increases the dynamics of their core helices, priming spikes for fusion. Conversely, substitutions in omicron spike lead to predominantly closed conformations, presumably enabling it to escape antibodies. At the same time, its core helices show characteristics of being pre-primed for fusion even in the absence of ACE2. These data inform on SARS-CoV-2 evolution and omicron variant emergence.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2 , SARS-CoV-2/genetics , Mutation
6.
Mol Ther ; 2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-2257176

ABSTRACT

Adenovirus vector vaccines have been widely and successfully deployed in response to coronavirus disease 2019 (COVID-19). However, despite inducing potent T cell immunity, improvement of vaccine-specific antibody responses upon homologous boosting is modest compared with other technologies. Here, we describe a system enabling modular decoration of adenovirus capsid surfaces with antigens and demonstrate potent induction of humoral immunity against these displayed antigens. Ligand attachment via a covalent bond was achieved using a protein superglue, DogTag/DogCatcher (similar to SpyTag/SpyCatcher), in a rapid and spontaneous reaction requiring only co-incubation of ligand and vector components. DogTag was inserted into surface-exposed loops in the adenovirus hexon protein to allow attachment of DogCatcher-fused ligands on virus particles. Efficient coverage of the capsid surface was achieved using various ligands, with vector infectivity retained in each case. Capsid decoration shielded particles from vector neutralizing antibodies. In prime-boost regimens, adenovirus vectors decorated with the receptor-binding domain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike induced >10-fold higher SARS-CoV-2 neutralization titers compared with an undecorated vector encoding spike. Importantly, decorated vectors achieved equivalent or superior T cell immunogenicity against encoded antigens compared with undecorated vectors. We propose capsid decoration using protein superglues as a novel strategy to improve efficacy and boostability of adenovirus-based vaccines and therapeutics.

7.
Front Immunol ; 13: 985938, 2022.
Article in English | MEDLINE | ID: covidwho-2224770

ABSTRACT

This proof-of-concept study tested if prior BCG revaccination can qualitatively and quantitively enhance antibody and T-cell responses induced by Oxford/AstraZeneca ChAdOx1nCoV-19 or COVISHIELD™, an efficacious and the most widely distributed vaccine in India. We compared COVISHIELD™ induced longitudinal immune responses in 21 BCG re-vaccinees (BCG-RV) and 13 BCG-non-revaccinees (BCG-NRV), all of whom were BCG vaccinated at birth; latent tuberculosis negative and SARS-CoV-2 seronegative prior to COVISHIELD™ vaccination. Compared to BCG-NRV, BCG-RV displayed significantly higher and persistent spike-specific neutralizing (n) Ab titers and polyfunctional CD4+ and CD8+ T-cells for eight months post COVISHIELD™ booster, including distinct CD4+IFN-γ+ and CD4+IFN-γ- effector memory (EM) subsets co-expressing IL-2, TNF-α and activation induced markers (AIM) CD154/CD137 as well as CD8+IFN-γ+ EM,TEMRA (T cell EM expressing RA) subset combinations co-expressing TNF-α and AIM CD137/CD69. Additionally, elevated nAb and T-cell responses to the Delta mutant in BCG-RV highlighted greater immune response breadth. Mechanistically, these BCG adjuvant effects were associated with elevated markers of trained immunity, including higher IL-1ß and TNF-α expression in CD14+HLA-DR+monocytes and changes in chromatin accessibility highlighting BCG-induced epigenetic changes. This study provides first in-depth analysis of both antibody and memory T-cell responses induced by COVISHIELD™ in SARS-CoV-2 seronegative young adults in India with strong evidence of a BCG-induced booster effect and therefore a rational basis to validate BCG, a low-cost and globally available vaccine, as an adjuvant to enhance heterologous adaptive immune responses to current and emerging COVID-19 vaccines.


Subject(s)
BCG Vaccine , COVID-19 Vaccines , COVID-19 , Humans , Young Adult , Adjuvants, Immunologic , Chromatin , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Immunity , Interleukin-2 , SARS-CoV-2 , Tumor Necrosis Factor-alpha , Vaccination
8.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2073641

ABSTRACT

This proof-of-concept study tested if prior BCG revaccination can qualitatively and quantitively enhance antibody and T-cell responses induced by Oxford/AstraZeneca ChAdOx1nCoV-19 or COVISHIELD™, an efficacious and the most widely distributed vaccine in India. We compared COVISHIELD™ induced longitudinal immune responses in 21 BCG re-vaccinees (BCG-RV) and 13 BCG-non-revaccinees (BCG-NRV), all of whom were BCG vaccinated at birth;latent tuberculosis negative and SARS-CoV-2 seronegative prior to COVISHIELD™ vaccination. Compared to BCG-NRV, BCG-RV displayed significantly higher and persistent spike-specific neutralizing (n) Ab titers and polyfunctional CD4+ and CD8+ T-cells for eight months post COVISHIELD™ booster, including distinct CD4+IFN-γ+ and CD4+IFN-γ- effector memory (EM) subsets co-expressing IL-2, TNF-α and activation induced markers (AIM) CD154/CD137 as well as CD8+IFN-γ+ EM,TEMRA (T cell EM expressing RA) subset combinations co-expressing TNF-α and AIM CD137/CD69. Additionally, elevated nAb and T-cell responses to the Delta mutant in BCG-RV highlighted greater immune response breadth. Mechanistically, these BCG adjuvant effects were associated with elevated markers of trained immunity, including higher IL-1β and TNF-α expression in CD14+HLA-DR+monocytes and changes in chromatin accessibility highlighting BCG-induced epigenetic changes. This study provides first in-depth analysis of both antibody and memory T-cell responses induced by COVISHIELD™ in SARS-CoV-2 seronegative young adults in India with strong evidence of a BCG-induced booster effect and therefore a rational basis to validate BCG, a low-cost and globally available vaccine, as an adjuvant to enhance heterologous adaptive immune responses to current and emerging COVID-19 vaccines.

9.
PLoS Pathog ; 18(10): e1010882, 2022 10.
Article in English | MEDLINE | ID: covidwho-2054396

ABSTRACT

COVID-19 vaccines are playing a vital role in controlling the COVID-19 pandemic. As SARS-CoV-2 variants encoding mutations in the surface glycoprotein, Spike, continue to emerge, there is increased need to identify immunogens and vaccination regimens that provide the broadest and most durable immune responses. We compared the magnitude and breadth of the neutralizing antibody response, as well as levels of Spike-reactive memory B cells, in individuals receiving a second dose of BNT162b2 at a short (3-4 week) or extended interval (8-12 weeks) and following a third vaccination approximately 6-8 months later. We show that whilst an extended interval between the first two vaccinations can greatly increase the breadth of the immune response and generate a higher proportion of Spike reactive memory B cells, a third vaccination leads to similar levels between the two groups. Furthermore, we show that the third vaccine dose enhances neutralization activity against omicron lineage members BA.1, BA.2 and BA.4/BA.5 and this is further increased following breakthrough infection during the UK omicron wave. These findings are relevant for vaccination strategies in populations where COVID-19 vaccine coverage remains low.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Membrane Glycoproteins/genetics , Pandemics , SARS-CoV-2/genetics , Vaccination
10.
EMBO Rep ; 23(10): e54322, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-2002704

ABSTRACT

The emergence of SARS-CoV-2 variants has exacerbated the COVID-19 global health crisis. Thus far, all variants carry mutations in the spike glycoprotein, which is a critical determinant of viral transmission being responsible for attachment, receptor engagement and membrane fusion, and an important target of immunity. Variants frequently bear truncations of flexible loops in the N-terminal domain (NTD) of spike; the functional importance of these modifications has remained poorly characterised. We demonstrate that NTD deletions are important for efficient entry by the Alpha and Omicron variants and that this correlates with spike stability. Phylogenetic analysis reveals extensive NTD loop length polymorphisms across the sarbecoviruses, setting an evolutionary precedent for loop remodelling. Guided by these analyses, we demonstrate that variations in NTD loop length, alone, are sufficient to modulate virus entry. We propose that variations in NTD loop length act to fine-tune spike; this may provide a mechanism for SARS-CoV-2 to navigate a complex selection landscape encompassing optimisation of essential functionality, immune-driven antigenic variation and ongoing adaptation to a new host.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
11.
Proc Natl Acad Sci U S A ; 119(34): e2201541119, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1984598

ABSTRACT

Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) ß and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2-specific seroconversion, and enrichment of some shared SARS-CoV-2-associated sequences. No significant age-related or disease severity-related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRß and TCRδ loci, including some TCRß sequence-sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection.


Subject(s)
Adaptive Immunity , COVID-19 , Immunoglobulin Heavy Chains , Receptors, Antigen, T-Cell, alpha-beta , Receptors, Antigen, T-Cell , SARS-CoV-2 , Adaptive Immunity/genetics , Aged , B-Lymphocytes/immunology , COVID-19/genetics , COVID-19/immunology , Genetic Loci , Humans , Immunoglobulin Heavy Chains/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , SARS-CoV-2/immunology , Seroconversion , T-Lymphocytes/immunology
12.
Cell Rep ; 40(8): 111276, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1982702

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination. While extensive research has shown that the receptor binding domain (RBD) and, to a lesser extent, the N-terminal domain (NTD) are the predominant targets for neutralizing antibodies, identification of neutralizing epitopes beyond these regions is important for informing vaccine development and understanding antibody-mediated immune escape. Here, we identify a class of broadly neutralizing antibodies that bind an epitope on the spike subdomain 1 (SD1) and that have arisen from infection or vaccination. Using cryo-electron microscopy (cryo-EM) and hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), we show that SD1-specific antibody P008_60 binds an epitope that is not accessible within the canonical prefusion states of the SARS-CoV-2 spike, suggesting a transient conformation of the viral glycoprotein that is vulnerable to neutralization.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Epitopes , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus , Syndactyly , Vaccination
13.
J Med Virol ; 94(11): 5217-5224, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1941184

ABSTRACT

This study assessed T-cell responses in individuals with and without a positive antibody response to SARS-CoV-2, in symptomatic and asymptomatic individuals during the COVID-19 pandemic. Participants were drawn from the TwinsUK cohort, grouped by (a) presence or absence of COVID-associated symptoms (S+, S-), logged prospectively through the COVID Symptom Study app, and (b) anti-IgG Spike and anti-IgG Nucleocapsid antibodies measured by ELISA (Ab+, Ab-), during the first wave of the UK pandemic. T-cell helper and regulatory responses after stimulation with SARS-CoV-2 peptides were assessed. Thirty-two participants were included in the final analysis. Fourteen of 15 with IgG Spike antibodies had a T-cell response to SARS-CoV-2-specific peptides; none of 17 participants without IgG Spike antibodies had a T-cell response (χ2 : 28.2, p < 0.001). Quantitative T-cell responses correlated strongly with fold-change in IgG Spike antibody titer (ρ = 0.79, p < 0.0001) but not to symptom score (ρ = 0.17, p = 0.35). Humoral and cellular immune responses to SARS-CoV-2 are highly correlated. We found no evidence of cellular immunity suggestive of SARS-CoV2 infection in individuals with a COVID-19-like illness but negative antibodies.


Subject(s)
B-Lymphocytes , COVID-19 , T-Lymphocytes , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoglobulin G , Pandemics , RNA, Viral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
14.
Viral Immunol ; 35(6): 425-436, 2022 07.
Article in English | MEDLINE | ID: covidwho-1937640

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has resulted in major worldwide disruption and loss of life over the last 2 years. Many research studies have shown waning serological SARS-CoV-2-specific IgG antibody titers over time, yet, it is unclear whether these changes are reflected in the potential functional reactivation of SARS-CoV-2 antigen-specific memory B cells (MBC) populations. This is especially true in the contexts of differing COVID-19 disease severity and after vaccination regimens. This study aimed to investigate these by polyclonal in vitro reactivation of MBC populations followed by analysis using SAR-CoV-2 antigen-specific B cell ELISpots and IgG antibody ELISAs. Natural disease-associated differences were investigated in 52 donors who have recovered from COVID-19 with varying disease severity, from asymptomatic to severe COVID-19 disease, accompanied by a longitudinal evaluation in a subset of donors. Overall, these data showed limited disease severity-associated differences between donor groups but did show that COVID-19 serologically positive donors had strong antigen-specific MBC-associated responses. MBC responses were better maintained 6 months after recovery from infection when compared to serological antigen-specific IgG antibody titers. A similar investigation after vaccination using 14 donors showed robust serological antigen-specific antibody responses against spike protein that waned over time. MBC-associated responses against spike protein were also observed but showed less waning over time, indicating maintenance of a protective response 6 months after vaccination. Further research is required to evaluate these putatively functional SARS-CoV-2-specific responses in the context of long-term protection mediated by vaccination against this pathogen.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunoglobulin G , Memory B Cells , SARS-CoV-2 , Vaccination
15.
Nat Commun ; 13(1): 3528, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1908168

ABSTRACT

The frequency of, and risk factors for, long COVID are unclear among community-based individuals with a history of COVID-19. To elucidate the burden and possible causes of long COVID in the community, we coordinated analyses of survey data from 6907 individuals with self-reported COVID-19 from 10 UK longitudinal study (LS) samples and 1.1 million individuals with COVID-19 diagnostic codes in electronic healthcare records (EHR) collected by spring 2021. Proportions of presumed COVID-19 cases in LS reporting any symptoms for 12+ weeks ranged from 7.8% and 17% (with 1.2 to 4.8% reporting debilitating symptoms). Increasing age, female sex, white ethnicity, poor pre-pandemic general and mental health, overweight/obesity, and asthma were associated with prolonged symptoms in both LS and EHR data, but findings for other factors, such as cardio-metabolic parameters, were inconclusive.


Subject(s)
COVID-19 , Electronic Health Records , COVID-19/complications , COVID-19/epidemiology , Female , Humans , Longitudinal Studies , Risk Factors , Surveys and Questionnaires , United Kingdom/epidemiology , Post-Acute COVID-19 Syndrome
16.
Int J Obes (Lond) ; 46(8): 1478-1486, 2022 08.
Article in English | MEDLINE | ID: covidwho-1852402

ABSTRACT

BACKGROUND: COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. SUBJECTS/METHODS: In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. RESULTS: Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 × 10-6), obesity status (P = 4.81 × 10-5), higher serum fasting insulin (P = 5.32 × 10-4), BMI (P = 3.94 × 10-4), and lower serum HDL levels (P = 1.92 × 10-7). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 × 10-4) and higher proportion of macrophages (P = 2.74 × 10-5). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. CONCLUSIONS: Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.


Subject(s)
Adipose Tissue , Angiotensin-Converting Enzyme 2 , COVID-19 , Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/genetics , Cardiometabolic Risk Factors , Diabetes Mellitus, Type 2/genetics , Endothelial Cells/metabolism , Humans , Obesity , SARS-CoV-2
17.
Cell Rep ; 39(5): 110757, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1850799

ABSTRACT

Although the antibody response to COVID-19 vaccination has been studied extensively at the polyclonal level using immune sera, little has been reported on the antibody response at the monoclonal level. Here, we isolate a panel of 44 anti-SARS-CoV-2 monoclonal antibodies (mAbs) from an individual who received two doses of the ChAdOx1 nCoV-19 (AZD1222) vaccine at a 12-week interval. We show that, despite a relatively low serum neutralization titer, Spike-reactive IgG+ B cells are still detectable 9 months post-boost. Furthermore, mAbs with potent neutralizing activity against the current SARS-CoV-2 variants of concern (Alpha, Gamma, Beta, Delta, and Omicron) are present. The vaccine-elicited neutralizing mAbs form eight distinct competition groups and bind epitopes overlapping with neutralizing mAbs elicited following SARS-CoV-2 infection. AZD1222-elicited mAbs are more mutated than mAbs isolated from convalescent donors 1-2 months post-infection. These findings provide molecular insights into the AZD1222 vaccine-elicited antibody response.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Vaccination
19.
mBio ; 13(2): e0379821, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1745822

ABSTRACT

Numerous studies have shown that a prior SARS-CoV-2 infection can greatly enhance the antibody response to COVID-19 vaccination, with this so called "hybrid immunity" leading to greater neutralization breadth against SARS-CoV-2 variants of concern. However, little is known about how breakthrough infection (BTI) in COVID-19-vaccinated individuals will impact the magnitude and breadth of the neutralizing antibody response. Here, we compared neutralizing antibody responses between unvaccinated and COVID-19-double-vaccinated individuals (including both AZD1222 and BNT162b2 vaccinees) who have been infected with the Delta (B.1.617.2) variant. Rapid production of spike-reactive IgG was observed in the vaccinated group, providing evidence of effective vaccine priming. Overall, potent cross-neutralizing activity against current SARS-CoV-2 variants of concern was observed in the BTI group compared to the infection group, including neutralization of the Omicron (B.1.1.529) variant. This study provides important insights into population immunity where transmission levels remain high and in the context of new or emerging variants of concern. IMPORTANCE COVID-19 vaccines have been vital in controlling SARS-CoV-2 infections and reducing hospitalizations. However, breakthrough SARS-CoV-2 infections (BTI) occur in some vaccinated individuals. Here, we study how BTI impacts on the potency and the breadth of the neutralizing antibody response. We show that a Delta infection in COVID-19-vaccinated individuals provides potent neutralization against the current SARS-CoV-2 variants of concern, including the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2/genetics
20.
J Clin Invest ; 132(2)2022 01 18.
Article in English | MEDLINE | ID: covidwho-1633624

ABSTRACT

Memory B cells (MBCs) can provide a recall response able to supplement waning antibodies (Abs) with an affinity-matured response better able to neutralize variant viruses. We studied a cohort of elderly care home residents and younger staff (median age of 87 years and 56 years, respectively), who had survived COVID-19 outbreaks with only mild or asymptomatic infection. The cohort was selected because of its high proportion of individuals who had lost neutralizing antibodies (nAbs), thus allowing us to specifically investigate the reserve immunity from SARS-CoV-2-specific MBCs in this setting. Class-switched spike and receptor-binding domain (RBD) tetramer-binding MBCs persisted 5 months after mild or asymptomatic SARS-CoV-2 infection, irrespective of age. The majority of spike- and RBD-specific MBCs had a classical phenotype, but we found that activated MBCs, indicating possible ongoing antigenic stimulation or inflammation, were expanded in the elderly group. Spike- and RBD-specific MBCs remained detectable in the majority of individuals who had lost nAbs, although at lower frequencies and with a reduced IgG/IgA isotype ratio. Functional spike-, S1 subunit of the spike protein- (S1-), and RBD-specific recall was also detectable by enzyme-linked immune absorbent spot (ELISPOT) assay in some individuals who had lost nAbs, but was significantly impaired in the elderly. Our findings demonstrate that a reserve of SARS-CoV-2-specific MBCs persists beyond the loss of nAbs but highlight the need for careful monitoring of functional defects in spike- and RBD-specific B cell immunity in the elderly.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunologic Memory , Memory B Cells/immunology , SARS-CoV-2/immunology , COVID-19/epidemiology , Female , Humans , Immunoglobulin Class Switching , Male , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL