Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2073641

ABSTRACT

This proof-of-concept study tested if prior BCG revaccination can qualitatively and quantitively enhance antibody and T-cell responses induced by Oxford/AstraZeneca ChAdOx1nCoV-19 or COVISHIELD™, an efficacious and the most widely distributed vaccine in India. We compared COVISHIELD™ induced longitudinal immune responses in 21 BCG re-vaccinees (BCG-RV) and 13 BCG-non-revaccinees (BCG-NRV), all of whom were BCG vaccinated at birth;latent tuberculosis negative and SARS-CoV-2 seronegative prior to COVISHIELD™ vaccination. Compared to BCG-NRV, BCG-RV displayed significantly higher and persistent spike-specific neutralizing (n) Ab titers and polyfunctional CD4+ and CD8+ T-cells for eight months post COVISHIELD™ booster, including distinct CD4+IFN-γ+ and CD4+IFN-γ- effector memory (EM) subsets co-expressing IL-2, TNF-α and activation induced markers (AIM) CD154/CD137 as well as CD8+IFN-γ+ EM,TEMRA (T cell EM expressing RA) subset combinations co-expressing TNF-α and AIM CD137/CD69. Additionally, elevated nAb and T-cell responses to the Delta mutant in BCG-RV highlighted greater immune response breadth. Mechanistically, these BCG adjuvant effects were associated with elevated markers of trained immunity, including higher IL-1β and TNF-α expression in CD14+HLA-DR+monocytes and changes in chromatin accessibility highlighting BCG-induced epigenetic changes. This study provides first in-depth analysis of both antibody and memory T-cell responses induced by COVISHIELD™ in SARS-CoV-2 seronegative young adults in India with strong evidence of a BCG-induced booster effect and therefore a rational basis to validate BCG, a low-cost and globally available vaccine, as an adjuvant to enhance heterologous adaptive immune responses to current and emerging COVID-19 vaccines.

2.
PLoS Pathog ; 18(10): e1010882, 2022 10.
Article in English | MEDLINE | ID: covidwho-2054396

ABSTRACT

COVID-19 vaccines are playing a vital role in controlling the COVID-19 pandemic. As SARS-CoV-2 variants encoding mutations in the surface glycoprotein, Spike, continue to emerge, there is increased need to identify immunogens and vaccination regimens that provide the broadest and most durable immune responses. We compared the magnitude and breadth of the neutralizing antibody response, as well as levels of Spike-reactive memory B cells, in individuals receiving a second dose of BNT162b2 at a short (3-4 week) or extended interval (8-12 weeks) and following a third vaccination approximately 6-8 months later. We show that whilst an extended interval between the first two vaccinations can greatly increase the breadth of the immune response and generate a higher proportion of Spike reactive memory B cells, a third vaccination leads to similar levels between the two groups. Furthermore, we show that the third vaccine dose enhances neutralization activity against omicron lineage members BA.1, BA.2 and BA.4/BA.5 and this is further increased following breakthrough infection during the UK omicron wave. These findings are relevant for vaccination strategies in populations where COVID-19 vaccine coverage remains low.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Membrane Glycoproteins/genetics , Pandemics , SARS-CoV-2/genetics , Vaccination
4.
EMBO Rep ; 23(10): e54322, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-2002704

ABSTRACT

The emergence of SARS-CoV-2 variants has exacerbated the COVID-19 global health crisis. Thus far, all variants carry mutations in the spike glycoprotein, which is a critical determinant of viral transmission being responsible for attachment, receptor engagement and membrane fusion, and an important target of immunity. Variants frequently bear truncations of flexible loops in the N-terminal domain (NTD) of spike; the functional importance of these modifications has remained poorly characterised. We demonstrate that NTD deletions are important for efficient entry by the Alpha and Omicron variants and that this correlates with spike stability. Phylogenetic analysis reveals extensive NTD loop length polymorphisms across the sarbecoviruses, setting an evolutionary precedent for loop remodelling. Guided by these analyses, we demonstrate that variations in NTD loop length, alone, are sufficient to modulate virus entry. We propose that variations in NTD loop length act to fine-tune spike; this may provide a mechanism for SARS-CoV-2 to navigate a complex selection landscape encompassing optimisation of essential functionality, immune-driven antigenic variation and ongoing adaptation to a new host.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Proc Natl Acad Sci U S A ; 119(34): e2201541119, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1984598

ABSTRACT

Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) ß and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2-specific seroconversion, and enrichment of some shared SARS-CoV-2-associated sequences. No significant age-related or disease severity-related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRß and TCRδ loci, including some TCRß sequence-sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection.


Subject(s)
Adaptive Immunity , COVID-19 , Immunoglobulin Heavy Chains , Receptors, Antigen, T-Cell, alpha-beta , Receptors, Antigen, T-Cell , SARS-CoV-2 , Adaptive Immunity/genetics , Aged , B-Lymphocytes/immunology , COVID-19/genetics , COVID-19/immunology , Genetic Loci , Humans , Immunoglobulin Heavy Chains/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , SARS-CoV-2/immunology , Seroconversion , T-Lymphocytes/immunology
6.
Cell Rep ; 40(8): 111276, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1982702

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination. While extensive research has shown that the receptor binding domain (RBD) and, to a lesser extent, the N-terminal domain (NTD) are the predominant targets for neutralizing antibodies, identification of neutralizing epitopes beyond these regions is important for informing vaccine development and understanding antibody-mediated immune escape. Here, we identify a class of broadly neutralizing antibodies that bind an epitope on the spike subdomain 1 (SD1) and that have arisen from infection or vaccination. Using cryo-electron microscopy (cryo-EM) and hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), we show that SD1-specific antibody P008_60 binds an epitope that is not accessible within the canonical prefusion states of the SARS-CoV-2 spike, suggesting a transient conformation of the viral glycoprotein that is vulnerable to neutralization.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Epitopes , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus , Syndactyly , Vaccination
7.
Mol Ther ; 2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-1977919

ABSTRACT

Adenovirus vector vaccines have been widely and successfully deployed in response to coronavirus disease 2019 (COVID-19). However, despite inducing potent T cell immunity, improvement of vaccine-specific antibody responses upon homologous boosting is modest compared with other technologies. Here, we describe a system enabling modular decoration of adenovirus capsid surfaces with antigens and demonstrate potent induction of humoral immunity against these displayed antigens. Ligand attachment via a covalent bond was achieved using a protein superglue, DogTag/DogCatcher (similar to SpyTag/SpyCatcher), in a rapid and spontaneous reaction requiring only co-incubation of ligand and vector components. DogTag was inserted into surface-exposed loops in the adenovirus hexon protein to allow attachment of DogCatcher-fused ligands on virus particles. Efficient coverage of the capsid surface was achieved using various ligands, with vector infectivity retained in each case. Capsid decoration shielded particles from vector neutralizing antibodies. In prime-boost regimens, adenovirus vectors decorated with the receptor-binding domain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike induced >10-fold higher SARS-CoV-2 neutralization titers compared with an undecorated vector encoding spike. Importantly, decorated vectors achieved equivalent or superior T cell immunogenicity against encoded antigens compared with undecorated vectors. We propose capsid decoration using protein superglues as a novel strategy to improve efficacy and boostability of adenovirus-based vaccines and therapeutics.

8.
J Med Virol ; 94(11): 5217-5224, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1941184

ABSTRACT

This study assessed T-cell responses in individuals with and without a positive antibody response to SARS-CoV-2, in symptomatic and asymptomatic individuals during the COVID-19 pandemic. Participants were drawn from the TwinsUK cohort, grouped by (a) presence or absence of COVID-associated symptoms (S+, S-), logged prospectively through the COVID Symptom Study app, and (b) anti-IgG Spike and anti-IgG Nucleocapsid antibodies measured by ELISA (Ab+, Ab-), during the first wave of the UK pandemic. T-cell helper and regulatory responses after stimulation with SARS-CoV-2 peptides were assessed. Thirty-two participants were included in the final analysis. Fourteen of 15 with IgG Spike antibodies had a T-cell response to SARS-CoV-2-specific peptides; none of 17 participants without IgG Spike antibodies had a T-cell response (χ2 : 28.2, p < 0.001). Quantitative T-cell responses correlated strongly with fold-change in IgG Spike antibody titer (ρ = 0.79, p < 0.0001) but not to symptom score (ρ = 0.17, p = 0.35). Humoral and cellular immune responses to SARS-CoV-2 are highly correlated. We found no evidence of cellular immunity suggestive of SARS-CoV2 infection in individuals with a COVID-19-like illness but negative antibodies.


Subject(s)
B-Lymphocytes , COVID-19 , T-Lymphocytes , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoglobulin G , Pandemics , RNA, Viral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
9.
Viral Immunol ; 35(6): 425-436, 2022 07.
Article in English | MEDLINE | ID: covidwho-1937640

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has resulted in major worldwide disruption and loss of life over the last 2 years. Many research studies have shown waning serological SARS-CoV-2-specific IgG antibody titers over time, yet, it is unclear whether these changes are reflected in the potential functional reactivation of SARS-CoV-2 antigen-specific memory B cells (MBC) populations. This is especially true in the contexts of differing COVID-19 disease severity and after vaccination regimens. This study aimed to investigate these by polyclonal in vitro reactivation of MBC populations followed by analysis using SAR-CoV-2 antigen-specific B cell ELISpots and IgG antibody ELISAs. Natural disease-associated differences were investigated in 52 donors who have recovered from COVID-19 with varying disease severity, from asymptomatic to severe COVID-19 disease, accompanied by a longitudinal evaluation in a subset of donors. Overall, these data showed limited disease severity-associated differences between donor groups but did show that COVID-19 serologically positive donors had strong antigen-specific MBC-associated responses. MBC responses were better maintained 6 months after recovery from infection when compared to serological antigen-specific IgG antibody titers. A similar investigation after vaccination using 14 donors showed robust serological antigen-specific antibody responses against spike protein that waned over time. MBC-associated responses against spike protein were also observed but showed less waning over time, indicating maintenance of a protective response 6 months after vaccination. Further research is required to evaluate these putatively functional SARS-CoV-2-specific responses in the context of long-term protection mediated by vaccination against this pathogen.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunoglobulin G , Memory B Cells , SARS-CoV-2 , Vaccination
10.
Nat Commun ; 13(1): 3528, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1908168

ABSTRACT

The frequency of, and risk factors for, long COVID are unclear among community-based individuals with a history of COVID-19. To elucidate the burden and possible causes of long COVID in the community, we coordinated analyses of survey data from 6907 individuals with self-reported COVID-19 from 10 UK longitudinal study (LS) samples and 1.1 million individuals with COVID-19 diagnostic codes in electronic healthcare records (EHR) collected by spring 2021. Proportions of presumed COVID-19 cases in LS reporting any symptoms for 12+ weeks ranged from 7.8% and 17% (with 1.2 to 4.8% reporting debilitating symptoms). Increasing age, female sex, white ethnicity, poor pre-pandemic general and mental health, overweight/obesity, and asthma were associated with prolonged symptoms in both LS and EHR data, but findings for other factors, such as cardio-metabolic parameters, were inconclusive.


Subject(s)
COVID-19 , Electronic Health Records , COVID-19/complications , COVID-19/epidemiology , Female , Humans , Longitudinal Studies , Risk Factors , Surveys and Questionnaires , United Kingdom/epidemiology
11.
Int J Obes (Lond) ; 46(8): 1478-1486, 2022 08.
Article in English | MEDLINE | ID: covidwho-1852402

ABSTRACT

BACKGROUND: COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. SUBJECTS/METHODS: In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. RESULTS: Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 × 10-6), obesity status (P = 4.81 × 10-5), higher serum fasting insulin (P = 5.32 × 10-4), BMI (P = 3.94 × 10-4), and lower serum HDL levels (P = 1.92 × 10-7). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 × 10-4) and higher proportion of macrophages (P = 2.74 × 10-5). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. CONCLUSIONS: Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.


Subject(s)
Adipose Tissue , Angiotensin-Converting Enzyme 2 , COVID-19 , Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/genetics , Cardiometabolic Risk Factors , Diabetes Mellitus, Type 2/genetics , Endothelial Cells/metabolism , Humans , Obesity , SARS-CoV-2
12.
Cell Rep ; 39(5): 110757, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1850799

ABSTRACT

Although the antibody response to COVID-19 vaccination has been studied extensively at the polyclonal level using immune sera, little has been reported on the antibody response at the monoclonal level. Here, we isolate a panel of 44 anti-SARS-CoV-2 monoclonal antibodies (mAbs) from an individual who received two doses of the ChAdOx1 nCoV-19 (AZD1222) vaccine at a 12-week interval. We show that, despite a relatively low serum neutralization titer, Spike-reactive IgG+ B cells are still detectable 9 months post-boost. Furthermore, mAbs with potent neutralizing activity against the current SARS-CoV-2 variants of concern (Alpha, Gamma, Beta, Delta, and Omicron) are present. The vaccine-elicited neutralizing mAbs form eight distinct competition groups and bind epitopes overlapping with neutralizing mAbs elicited following SARS-CoV-2 infection. AZD1222-elicited mAbs are more mutated than mAbs isolated from convalescent donors 1-2 months post-infection. These findings provide molecular insights into the AZD1222 vaccine-elicited antibody response.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Vaccination
14.
mBio ; 13(2): e0379821, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1745822

ABSTRACT

Numerous studies have shown that a prior SARS-CoV-2 infection can greatly enhance the antibody response to COVID-19 vaccination, with this so called "hybrid immunity" leading to greater neutralization breadth against SARS-CoV-2 variants of concern. However, little is known about how breakthrough infection (BTI) in COVID-19-vaccinated individuals will impact the magnitude and breadth of the neutralizing antibody response. Here, we compared neutralizing antibody responses between unvaccinated and COVID-19-double-vaccinated individuals (including both AZD1222 and BNT162b2 vaccinees) who have been infected with the Delta (B.1.617.2) variant. Rapid production of spike-reactive IgG was observed in the vaccinated group, providing evidence of effective vaccine priming. Overall, potent cross-neutralizing activity against current SARS-CoV-2 variants of concern was observed in the BTI group compared to the infection group, including neutralization of the Omicron (B.1.1.529) variant. This study provides important insights into population immunity where transmission levels remain high and in the context of new or emerging variants of concern. IMPORTANCE COVID-19 vaccines have been vital in controlling SARS-CoV-2 infections and reducing hospitalizations. However, breakthrough SARS-CoV-2 infections (BTI) occur in some vaccinated individuals. Here, we study how BTI impacts on the potency and the breadth of the neutralizing antibody response. We show that a Delta infection in COVID-19-vaccinated individuals provides potent neutralization against the current SARS-CoV-2 variants of concern, including the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2/genetics
15.
J Clin Invest ; 132(2)2022 01 18.
Article in English | MEDLINE | ID: covidwho-1633624

ABSTRACT

Memory B cells (MBCs) can provide a recall response able to supplement waning antibodies (Abs) with an affinity-matured response better able to neutralize variant viruses. We studied a cohort of elderly care home residents and younger staff (median age of 87 years and 56 years, respectively), who had survived COVID-19 outbreaks with only mild or asymptomatic infection. The cohort was selected because of its high proportion of individuals who had lost neutralizing antibodies (nAbs), thus allowing us to specifically investigate the reserve immunity from SARS-CoV-2-specific MBCs in this setting. Class-switched spike and receptor-binding domain (RBD) tetramer-binding MBCs persisted 5 months after mild or asymptomatic SARS-CoV-2 infection, irrespective of age. The majority of spike- and RBD-specific MBCs had a classical phenotype, but we found that activated MBCs, indicating possible ongoing antigenic stimulation or inflammation, were expanded in the elderly group. Spike- and RBD-specific MBCs remained detectable in the majority of individuals who had lost nAbs, although at lower frequencies and with a reduced IgG/IgA isotype ratio. Functional spike-, S1 subunit of the spike protein- (S1-), and RBD-specific recall was also detectable by enzyme-linked immune absorbent spot (ELISPOT) assay in some individuals who had lost nAbs, but was significantly impaired in the elderly. Our findings demonstrate that a reserve of SARS-CoV-2-specific MBCs persists beyond the loss of nAbs but highlight the need for careful monitoring of functional defects in spike- and RBD-specific B cell immunity in the elderly.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunologic Memory , Memory B Cells/immunology , SARS-CoV-2/immunology , COVID-19/epidemiology , Female , Humans , Immunoglobulin Class Switching , Male , Spike Glycoprotein, Coronavirus/immunology
18.
Lancet Rheumatol ; 4(1): e42-e52, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1595648

ABSTRACT

BACKGROUND: COVID-19 vaccines have robust immunogenicity in the general population. However, data for individuals with immune-mediated inflammatory diseases who are taking immunosuppressants remains scarce. Our previously published cohort study showed that methotrexate, but not targeted biologics, impaired functional humoral immunity to a single dose of COVID-19 vaccine BNT162b2 (Pfizer-BioNTech), whereas cellular responses were similar. Here, we aimed to assess immune responses following the second dose. METHODS: In this longitudinal cohort study, we recruited individuals with psoriasis who were receiving methotrexate or targeted biological monotherapy (ie, tumour necrosis factor [TNF] inhibitors, interleukin [IL]-17 inhibitors, or IL-23 inhibitors) from a specialist psoriasis centre serving London and South-East England. The healthy control cohort were volunteers without psoriasis, not receiving immunosuppression. Immunogenicity was evaluated immediately before, on day 28 after the first BNT162b2 vaccination and on day 14 after the second dose (administered according to an extended interval regimen). Here, we report immune responses following the second dose. The primary outcomes were humoral immunity to the SARS-CoV-2 spike glycoprotein, defined as titres of total spike-specific IgG and of neutralising antibody to wild-type, alpha (B.1.1.7), and delta (B.1.617.2) SARS-CoV-2 variants, and cellular immunity defined as spike-specific T-cell responses (including numbers of cells producing interferon-γ, IL-2, IL-21). FINDINGS: Between Jan 14 and April 4, 2021, 121 individuals were recruited, and data were available for 82 participants after the second vaccination. The study population included patients with psoriasis receiving methotrexate (n=14), TNF inhibitors (n=19), IL-17 inhibitors (n=14), IL-23 inhibitors (n=20), and 15 healthy controls, who had received both vaccine doses. The median age of the study population was 44 years (IQR 33-52), with 43 (52%) males and 71 (87%) participants of White ethnicity. All participants had detectable spike-specific antibodies following the second dose, and all groups (methotrexate, targeted biologics, and healthy controls) demonstrated similar neutralising antibody titres against wild-type, alpha, and delta variants. By contrast, a lower proportion of participants on methotrexate (eight [62%] of 13, 95% CI 32-86) and targeted biologics (37 [74%] of 50, 60-85; p=0·38) had detectable T-cell responses following the second vaccine dose, compared with controls (14 [100%] of 14, 77-100; p=0·022). There was no difference in the magnitude of T-cell responses between patients receiving methotrexate (median cytokine-secreting cells per 106 cells 160 [IQR 10-625]), targeted biologics (169 [25-503], p=0·56), and controls (185 [133-328], p=0·41). INTERPRETATION: Functional humoral immunity (ie, neutralising antibody responses) at 14 days following a second dose of BNT162b2 was not impaired by methotrexate or targeted biologics. A proportion of patients on immunosuppression did not have detectable T-cell responses following the second dose. The longevity of vaccine-elicited antibody responses is unknown in this population. FUNDING: NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London; The Psoriasis Association.

20.
Lancet Oncol ; 22(6): 765-778, 2021 06.
Article in English | MEDLINE | ID: covidwho-1531901

ABSTRACT

BACKGROUND: The efficacy and safety profiles of vaccines against SARS-CoV-2 in patients with cancer is unknown. We aimed to assess the safety and immunogenicity of the BNT162b2 (Pfizer-BioNTech) vaccine in patients with cancer. METHODS: For this prospective observational study, we recruited patients with cancer and healthy controls (mostly health-care workers) from three London hospitals between Dec 8, 2020, and Feb 18, 2021. Participants who were vaccinated between Dec 8 and Dec 29, 2020, received two 30 µg doses of BNT162b2 administered intramuscularly 21 days apart; patients vaccinated after this date received only one 30 µg dose with a planned follow-up boost at 12 weeks. Blood samples were taken before vaccination and at 3 weeks and 5 weeks after the first vaccination. Where possible, serial nasopharyngeal real-time RT-PCR (rRT-PCR) swab tests were done every 10 days or in cases of symptomatic COVID-19. The coprimary endpoints were seroconversion to SARS-CoV-2 spike (S) protein in patients with cancer following the first vaccination with the BNT162b2 vaccine and the effect of vaccine boosting after 21 days on seroconversion. All participants with available data were included in the safety and immunogenicity analyses. Ongoing follow-up is underway for further blood sampling after the delayed (12-week) vaccine boost. This study is registered with the NHS Health Research Authority and Health and Care Research Wales (REC ID 20/HRA/2031). FINDINGS: 151 patients with cancer (95 patients with solid cancer and 56 patients with haematological cancer) and 54 healthy controls were enrolled. For this interim data analysis of the safety and immunogenicity of vaccinated patients with cancer, samples and data obtained up to March 19, 2021, were analysed. After exclusion of 17 patients who had been exposed to SARS-CoV-2 (detected by either antibody seroconversion or a positive rRT-PCR COVID-19 swab test) from the immunogenicity analysis, the proportion of positive anti-S IgG titres at approximately 21 days following a single vaccine inoculum across the three cohorts were 32 (94%; 95% CI 81-98) of 34 healthy controls; 21 (38%; 26-51) of 56 patients with solid cancer, and eight (18%; 10-32) of 44 patients with haematological cancer. 16 healthy controls, 25 patients with solid cancer, and six patients with haematological cancer received a second dose on day 21. Of the patients with available blood samples 2 weeks following a 21-day vaccine boost, and excluding 17 participants with evidence of previous natural SARS-CoV-2 exposure, 18 (95%; 95% CI 75-99) of 19 patients with solid cancer, 12 (100%; 76-100) of 12 healthy controls, and three (60%; 23-88) of five patients with haematological cancers were seropositive, compared with ten (30%; 17-47) of 33, 18 (86%; 65-95) of 21, and four (11%; 4-25) of 36, respectively, who did not receive a boost. The vaccine was well tolerated; no toxicities were reported in 75 (54%) of 140 patients with cancer following the first dose of BNT162b2, and in 22 (71%) of 31 patients with cancer following the second dose. Similarly, no toxicities were reported in 15 (38%) of 40 healthy controls after the first dose and in five (31%) of 16 after the second dose. Injection-site pain within 7 days following the first dose was the most commonly reported local reaction (23 [35%] of 65 patients with cancer; 12 [48%] of 25 healthy controls). No vaccine-related deaths were reported. INTERPRETATION: In patients with cancer, one dose of the BNT162b2 vaccine yields poor efficacy. Immunogenicity increased significantly in patients with solid cancer within 2 weeks of a vaccine boost at day 21 after the first dose. These data support prioritisation of patients with cancer for an early (day 21) second dose of the BNT162b2 vaccine. FUNDING: King's College London, Cancer Research UK, Wellcome Trust, Rosetrees Trust, and Francis Crick Institute.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/immunology , Neoplasms/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/blood , COVID-19/complications , COVID-19/virology , COVID-19 Vaccines/immunology , Dose-Response Relationship, Immunologic , Female , Humans , Immunogenicity, Vaccine/immunology , London/epidemiology , Male , Middle Aged , Neoplasms/blood , Neoplasms/complications , Neoplasms/virology , Prospective Studies , SARS-CoV-2 , Wales
SELECTION OF CITATIONS
SEARCH DETAIL