ABSTRACT
Many medications have been reported to be associated with thrombotic thrombocytopenic purpura (TTP) through pharmacovigilance data and published case reports. Whilst there are existing data available regarding drug-induced thrombotic microangiopathy, there is no available synthesis of evidence to assess drug-induced TTP (DI-TTP). Despite this lack of evidence, patients with TTP are often advised against using many medications due to the theoretical risk of DI-TTP. This systematic review evaluated the evidence for an association of medications reported as potential triggers for TTP. Of 5098 records available 261 articles were assessed further for eligibility. Fifty-seven reports, totalling 90 patients, were included in the final analysis. There were no cases where the level of association was rated as definite or probable, demonstrating a lack of evidence of any drug causing DI-TTP. This paucity of evidence was also demonstrated in the pharmacovigilance data, where 613 drugs were reported as potential causes of TTP without assessment of the strength of association. This systematic review demonstrates the need for standardised reporting of potential drugs causing TTP. Many reports omit basic information and, therefore, hinder the chance of finding a causative link if one exists.
Subject(s)
Purpura, Thrombotic Thrombocytopenic , Thrombotic Microangiopathies , Humans , Purpura, Thrombotic Thrombocytopenic/chemically induced , Pharmacovigilance , North AmericaABSTRACT
OBJECTIVE: Evaluate the safety and effectiveness of convalescent plasma (CP) or hyperimmune immunoglobulin (hIVIG) in severe respiratory disease caused by coronaviruses or influenza, in patients of all ages requiring hospital admission. METHODS: We searched multiple electronic databases for all publications to 12th October 2020, and RCTs only to 28th June 2021. Two reviewers screened, extracted, and analysed data. We used Cochrane ROB (Risk of Bias)1 for RCTs, ROBINS-I for non-RCTs, and GRADE to assess the certainty of the evidence. RESULTS: Data from 30 RCTs and 2 non-RCTs showed no overall difference between groups for all-cause mortality and adverse events in four comparisons. Certainty of the evidence was downgraded for high ROB and imprecision. (1) CP versus standard care (SoC) (20 RCTS, 2 non-RCTs, very-low to moderate-high certainty); (2) CP versus biologically active control (6 RCTs, very-low certainty); (3) hIVIG versus SoC (3 RCTs, very-low certainty); (4) early CP versus deferred CP (1 RCT, very-low certainty). Subgrouping by titre improved precision in one outcome (30-day mortality) for the 'COVID high-titre' category in Comparison 1 (no difference, high certainty) and Comparison 2 (favours CP, very-low certainty). Post hoc analysis suggests a possible benefit of CP in patients testing negative for antibodies at baseline, compared with those testing positive. CONCLUSION: A minimum titre should be established and ensured for a positive biological response to the therapy. Further research on the impact of CP/hIVIG in patients who have not yet produced antibodies to the virus would be useful to target therapies at groups who will potentially benefit the most.
ABSTRACT
Summary Evidence-based medicine (EBM) has been described by Sackett et al. as ?the integration of best research evidence with clinical expertise and patient values?. This chapter discusses core elements of EBM with particular reference to clinical research in transfusion medicine, and provides a practical approach to searching for evidence and critical appraisal, with some considerations of different study designs. It also includes a review of how the evidence base for transfusion medicine was collated in response to the COVID-19 pandemic. One important component of EBM is the critical appraisal of the evidence generated from a study. One important aspect of clinical trial appraisal concerns the understanding of chance variation and sample-size calculation. Appraising the evidence base for transfusion medicine is one part of improving practice;another is the effective dissemination of the evidence to clinicians.
ABSTRACT
BACKGROUND: Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are currently being investigated in trials as potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required. OBJECTIVES: To continually assess, as more evidence becomes available, whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in treatment of people with COVID-19. SEARCH METHODS: We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trial registries to identify completed and ongoing studies on 19 August 2020. SELECTION CRITERIA: We followed standard Cochrane methodology. We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of study design, disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of bias' 2.0 tool for randomised controlled trials (RCTs), the Risk of Bias in Non-randomised Studies - of Interventions (ROBINS-I) tool for controlled non-randomised studies of interventions (NRSIs), and the assessment criteria for observational studies, provided by Cochrane Childhood Cancer for non-controlled NRSIs. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, mortality (time to event), improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events (AEs), and serious adverse events (SAEs). MAIN RESULTS: This is the second living update of our review. We included 19 studies (2 RCTs, 8 controlled NRSIs, 9 non-controlled NRSIs) with 38,160 participants, of whom 36,081 received convalescent plasma. Two completed RCTs are awaiting assessment (published after 19 August 2020). We identified a further 138 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, of which 73 are randomised (3 reported in a study registry as already being completed, but without results). We did not identify any completed studies evaluating hyperimmune immunoglobulin. We did not include data from controlled NRSIs in data synthesis because of critical risk of bias. The overall certainty of evidence was low to very low, due to study limitations and results including both potential benefits and harms. Effectiveness of convalescent plasma for people with COVID-19 We included results from two RCTs (both stopped early) with 189 participants, of whom 95 received convalescent plasma. Control groups received standard care at time of treatment without convalescent plasma. We are uncertain whether convalescent plasma decreases all-cause mortality at hospital discharge (risk ratio (RR) 0.55, 95% confidence interval (CI) 0.22 to 1.34; 1 RCT, 86 participants; low-certainty evidence). We are uncertain whether convalescent plasma decreases mortality (time to event) (hazard ratio (HR) 0.64, 95% CI 0.33 to 1.25; 2 RCTs, 189 participants; low-certainty evidence). Convalescent plasma may result in little to no difference in improvement of clinical symptoms (i.e. need for respiratory support) at seven days (RR 0.98, 95% CI 0.30 to 3.19; 1 RCT, 103 participants; low-certainty evidence). Convalescent plasma may increase improvement of clinical symptoms at up to 15 days (RR 1.34, 95% CI 0.85 to 2.11; 2 RCTs, 189 participants; low-certainty evidence), and at up to 30 days (RR 1.13, 95% CI 0.88 to 1.43; 2 studies, 188 participants; low-certainty evidence). No studies reported on quality of life. Safety of convalescent plasma for people with COVID-19 We included results from two RCTs, eight controlled NRSIs and nine non-controlled NRSIs assessing safety of convalescent plasma. Reporting of safety data and duration of follow-up was variable. The controlled studies reported on AEs and SAEs only in participants receiving convalescent plasma. Some, but not all, studies included death as a SAE. The studies did not report the grade of AEs. Fourteen studies (566 participants) reported on AEs of possible grade 3 or 4 severity. The majority of these AEs were allergic or respiratory events. We are very uncertain whether convalescent plasma therapy affects the risk of moderate to severe AEs (very low-certainty evidence). 17 studies (35,944 participants) assessed SAEs for 20,622 of its participants. The majority of participants were from one non-controlled NRSI (20,000 participants), which reported on SAEs within the first four hours and within an additional seven days after transfusion. There were 63 deaths, 12 were possibly and one was probably related to transfusion. There were 146 SAEs within four hours and 1136 SAEs within seven days post-transfusion. These were predominantly allergic or respiratory, thrombotic or thromboembolic and cardiac events. We are uncertain whether convalescent plasma therapy results in a clinically relevant increased risk of SAEs (low-certainty evidence). AUTHORS' CONCLUSIONS: We are uncertain whether convalescent plasma is beneficial for people admitted to hospital with COVID-19. There was limited information regarding grade 3 and 4 AEs to determine the effect of convalescent plasma therapy on clinically relevant SAEs. In the absence of a control group, we are unable to assess the relative safety of convalescent plasma therapy. While major efforts to conduct research on COVID-19 are being made, recruiting the anticipated number of participants into these studies is problematic. The early termination of the first two RCTs investigating convalescent plasma, and the lack of data from 20 studies that have completed or were due to complete at the time of this update illustrate these challenges. Well-designed studies should be prioritised. Moreover, studies should report outcomes in the same way, and should consider the importance of maintaining comparability in terms of co-interventions administered in all study arms. There are 138 ongoing studies evaluating convalescent plasma and hyperimmune immunoglobulin, of which 73 are RCTs (three already completed). This is the second living update of the review, and we will continue to update this review periodically. Future updates may show different results to those reported here.
Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Bias , COVID-19 , Cause of Death , Coronavirus Infections/mortality , Humans , Immunization, Passive/adverse effects , Immunization, Passive/methods , Immunization, Passive/statistics & numerical data , Non-Randomized Controlled Trials as Topic/statistics & numerical data , Pandemics , Pneumonia, Viral/mortality , Randomized Controlled Trials as Topic/statistics & numerical data , Treatment Outcome , COVID-19 SerotherapyABSTRACT
BACKGROUND: Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are currently being investigated in trials as potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required. OBJECTIVES: To continually assess, as more evidence becomes available, whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in treatment of people with COVID-19. SEARCH METHODS: We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trial registries to identify completed and ongoing studies on 4 June 2020. SELECTION CRITERIA: We followed standard Cochrane methodology. We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of study design, disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of bias' tool for randomised controlled trials (RCTs), the Risk of Bias in Non-randomised Studies - of Interventions (ROBINS-I) tool for controlled non-randomised studies of interventions (NRSIs), and the assessment criteria for observational studies, provided by Cochrane Childhood Cancer for non-controlled NRSIs. MAIN RESULTS: This is the first living update of our review. We included 20 studies (1 RCT, 3 controlled NRSIs, 16 non-controlled NRSIs) with 5443 participants, of whom 5211 received convalescent plasma, and identified a further 98 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, of which 50 are randomised. We did not identify any completed studies evaluating hyperimmune immunoglobulin. Overall risk of bias of included studies was high, due to study design, type of participants, and other previous or concurrent treatments. Effectiveness of convalescent plasma for people with COVID-19 We included results from four controlled studies (1 RCT (stopped early) with 103 participants, of whom 52 received convalescent plasma; and 3 controlled NRSIs with 236 participants, of whom 55 received convalescent plasma) to assess effectiveness of convalescent plasma. Control groups received standard care at time of treatment without convalescent plasma. All-cause mortality at hospital discharge (1 controlled NRSI, 21 participants) We are very uncertain whether convalescent plasma has any effect on all-cause mortality at hospital discharge (risk ratio (RR) 0.89, 95% confidence interval (CI) 0.61 to 1.31; very low-certainty evidence). Time to death (1 RCT, 103 participants; 1 controlled NRSI, 195 participants) We are very uncertain whether convalescent plasma prolongs time to death (RCT: hazard ratio (HR) 0.74, 95% CI 0.30 to 1.82; controlled NRSI: HR 0.46, 95% CI 0.22 to 0.96; very low-certainty evidence). Improvement of clinical symptoms, assessed by need for respiratory support (1 RCT, 103 participants; 1 controlled NRSI, 195 participants) We are very uncertain whether convalescent plasma has any effect on improvement of clinical symptoms at seven days (RCT: RR 0.98, 95% CI 0.30 to 3.19), 14 days (RCT: RR 1.85, 95% CI 0.91 to 3.77; controlled NRSI: RR 1.08, 95% CI 0.91 to 1.29), and 28 days (RCT: RR 1.20, 95% CI 0.80 to 1.81; very low-certainty evidence). Quality of life No studies reported this outcome. Safety of convalescent plasma for people with COVID-19 We included results from 1 RCT, 3 controlled NRSIs and 10 non-controlled NRSIs assessing safety of convalescent plasma. Reporting of adverse events and serious adverse events was variable. The controlled studies reported on adverse events and serious adverse events only in participants receiving convalescent plasma. The duration of follow-up varied. Some, but not all, studies included death as a serious adverse event. Grade 3 or 4 adverse events (13 studies, 201 participants) The studies did not report the grade of adverse events. Thirteen studies (201 participants) reported on adverse events of possible grade 3 or 4 severity. The majority of these adverse events were allergic or respiratory events. We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence). Serious adverse events (14 studies, 5201 participants) Fourteen studies (5201 participants) reported on serious adverse events. The majority of participants were from one non-controlled NRSI (5000 participants), which reported only on serious adverse events limited to the first four hours after convalescent plasma transfusion. This study included death as a serious adverse event; they reported 15 deaths, four of which they classified as potentially, probably or definitely related to transfusion. Other serious adverse events reported in all studies were predominantly allergic or respiratory in nature, including anaphylaxis, transfusion-associated dyspnoea, and transfusion-related acute lung injury (TRALI). We are very uncertain whether or not convalescent plasma affects the number of serious adverse events. AUTHORS' CONCLUSIONS: We are very uncertain whether convalescent plasma is beneficial for people admitted to hospital with COVID-19. For safety outcomes we also included non-controlled NRSIs. There was limited information regarding adverse events. Of the controlled studies, none reported on this outcome in the control group. There is only very low-certainty evidence for safety of convalescent plasma for COVID-19. While major efforts to conduct research on COVID-19 are being made, problems with recruiting the anticipated number of participants into these studies are conceivable. The early termination of the first RCT investigating convalescent plasma, and the multitude of studies registered in the past months illustrate this. It is therefore necessary to critically assess the design of these registered studies, and well-designed studies should be prioritised. Other considerations for these studies are the need to report outcomes for all study arms in the same way, and the importance of maintaining comparability in terms of co-interventions administered in all study arms. There are 98 ongoing studies evaluating convalescent plasma and hyperimmune immunoglobulin, of which 50 are RCTs. This is the first living update of the review, and we will continue to update this review periodically. These updates may show different results to those reported here.
Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , COVID-19 , Cause of Death , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Early Termination of Clinical Trials , Humans , Immunization, Passive/adverse effects , Immunization, Passive/methods , Immunization, Passive/mortality , Immunization, Passive/statistics & numerical data , Non-Randomized Controlled Trials as Topic/mortality , Non-Randomized Controlled Trials as Topic/statistics & numerical data , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Randomized Controlled Trials as Topic/statistics & numerical data , Respiration, Artificial/statistics & numerical data , SARS-CoV-2 , Selection Bias , Severity of Illness Index , Treatment Outcome , COVID-19 SerotherapyABSTRACT
The COVID-19 pandemic has major implications for blood transfusion. There are uncertain patterns of demand, and transfusion institutions need to plan for reductions in donations and loss of crucial staff because of sickness and public health restrictions. We systematically searched for relevant studies addressing the transfusion chain-from donor, through collection and processing, to patients-to provide a synthesis of the published literature and guidance during times of potential or actual shortage. A reduction in donor numbers has largely been matched by reductions in demand for transfusion. Contingency planning includes prioritisation policies for patients in the event of predicted shortage. A range of strategies maintain ongoing equitable access to blood for transfusion during the pandemic, in addition to providing new therapies such as convalescent plasma. Sharing experience and developing expert consensus on the basis of evolving publications will help transfusion services and hospitals in countries at different stages in the pandemic.
Subject(s)
Betacoronavirus , Blood Banks/statistics & numerical data , Blood Donors/supply & distribution , Blood Transfusion , Coronavirus Infections , Pandemics , Pneumonia, Viral , Antibodies, Viral/therapeutic use , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/therapy , Blood Preservation , Blood Safety , Blood Transfusion/statistics & numerical data , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Donor Selection , Elective Surgical Procedures , Health Care Rationing , Health Policy , Health Services Needs and Demand , Hemoglobinopathies/complications , Hemoglobinopathies/therapy , Humans , Immunization, Passive , Pandemics/prevention & control , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Randomized Controlled Trials as Topic , SARS-CoV-2 , COVID-19 SerotherapyABSTRACT
BACKGROUND: Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with respiratory virus diseases, and are currently being investigated in trials as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required. OBJECTIVES: To assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19. SEARCH METHODS: The protocol was pre-published with the Center for Open Science and can be accessed here: osf.io/dwf53 We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trials registries to identify ongoing studies and results of completed studies on 23 April 2020 for case-series, cohort, prospectively planned, and randomised controlled trials (RCTs). SELECTION CRITERIA: We followed standard Cochrane methodology and performed all steps regarding study selection in duplicate by two independent review authors (in contrast to the recommendations of the Cochrane Rapid Reviews Methods Group). We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulins. DATA COLLECTION AND ANALYSIS: We followed recommendations of the Cochrane Rapid Reviews Methods Group regarding data extraction and assessment. To assess bias in included studies, we used the assessment criteria tool for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events, and serious adverse events. MAIN RESULTS: We included eight studies (seven case-series, one prospectively planned, single-arm intervention study) with 32 participants, and identified a further 48 ongoing studies evaluating convalescent plasma (47 studies) or hyperimmune immunoglobulin (one study), of which 22 are randomised. Overall risk of bias of the eight included studies was high, due to: study design; small number of participants; poor reporting within studies; and varied type of participants with different severities of disease, comorbidities, and types of previous or concurrent treatments, including antivirals, antifungals or antibiotics, corticosteroids, hydroxychloroquine and respiratory support. We rated all outcomes as very low certainty, and we were unable to summarise numerical data in any meaningful way. As we identified case-series studies only, we reported results narratively. Effectiveness of convalescent plasma for people with COVID-19 The following reported outcomes could all be related to the underlying natural history of the disease or other concomitant treatment, rather than convalescent plasma. All-cause mortality at hospital discharge All studies reported mortality. All participants were alive at the end of the reporting period, but not all participants had been discharged from hospital by the end of the study (15 participants discharged, 6 still hospitalised, 11 unclear). Follow-up ranged from 3 days to 37 days post-transfusion. We do not know whether convalescent plasma therapy affects mortality (very low-certainty evidence). Improvement of clinical symptoms (assessed by respiratory support) Six studies, including 28 participants, reported the level of respiratory support required; most participants required respiratory support at baseline. All studies reported improvement in clinical symptoms in at least some participants. We do not know whether convalescent plasma improves clinical symptoms (very low-certainty evidence). Time to discharge from hospital Six studies reported time to discharge from hospital for at least some participants, which ranged from four to 35 days after convalescent plasma therapy. Admission on the intensive care unit (ICU) Six studies included patients who were critically ill. At final follow-up the majority of these patients were no longer on the ICU or no longer required mechanical ventilation. Length of stay on the ICU Only one study (1 participant) reported length of stay on the ICU. The individual was discharged from the ICU 11 days after plasma transfusion. Safety of convalescent plasma for people with COVID-19 Grade 3 or 4 adverse events The studies did not report the grade of adverse events after convalescent plasma transfusion. Two studies reported data relating to participants who had experienced adverse events, that were presumably grade 3 or 4. One case study reported a participant who had moderate fever (38.9 °C). Another study (3 participants) reported a case of severe anaphylactic shock. Four studies reported the absence of moderate or severe adverse events (19 participants). We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence). Serious adverse events One study (3 participants) reported one serious adverse event. As described above, this individual had severe anaphylactic shock after receiving convalescent plasma. Six studies reported that no serious adverse events occurred. We are very uncertain whether or not convalescent plasma therapy affects the risk of serious adverse events (very low-certainty evidence). AUTHORS' CONCLUSIONS: We identified eight studies (seven case-series and one prospectively planned single-arm intervention study) with a total of 32 participants (range 1 to 10). Most studies assessed the risks of the intervention; reporting two adverse events (potentially grade 3 or 4), one of which was a serious adverse event. We are very uncertain whether convalescent plasma is effective for people admitted to hospital with COVID-19 as studies reported results inconsistently, making it difficult to compare results and to draw conclusions. We identified very low-certainty evidence on the effectiveness and safety of convalescent plasma therapy for people with COVID-19; all studies were at high risk of bias and reporting quality was low. No RCTs or controlled non-randomised studies evaluating benefits and harms of convalescent plasma have been completed. There are 47 ongoing studies evaluating convalescent plasma, of which 22 are RCTs, and one trial evaluating hyperimmune immunoglobulin. We will update this review as a living systematic review, based on monthly searches in the above mentioned databases and registries. These updates are likely to show different results to those reported here.