Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Journal
Document Type
Year range
1.
EMBO J ; 39(20): e105938, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-750343

ABSTRACT

COVID-19, caused by SARS-CoV-2, has resulted in severe and unprecedented economic and social disruptions in the world. Nucleocapsid (N) protein, which is the major structural component of the virion and is involved in viral replication, assembly and immune regulation, plays key roles in the viral life cycle. Here, we solved the crystal structures of the N- and C-terminal domains (N-NTD and N-CTD) of SARS-CoV-2 N protein, at 1.8 and 1.5 Å resolution, respectively. Both structures show conserved features from other CoV N proteins. The binding sites targeted by small molecules against HCoV-OC43 and MERS-CoV, which inhibit viral infection by blocking the RNA-binding activity or normal oligomerization of N protein, are relatively conserved in our structure, indicating N protein is a promising drug target. In addition, certain areas of N-NTD and N-CTD display distinct charge distribution patterns in SARS-CoV-2, which may alter the RNA-binding modes. The specific antigenic characteristics are critical for developing specific immune-based rapid diagnostic tests. Our structural information can aid in the discovery and development of antiviral inhibitors against SARS-CoV-2 in the future.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/chemistry , Drug Design , Nucleocapsid Proteins/chemistry , Betacoronavirus/drug effects , Coronavirus Nucleocapsid Proteins , Crystallography, X-Ray , Drug Delivery Systems , Humans , Models, Molecular , Nucleocapsid Proteins/drug effects , Phosphoproteins , Protein Conformation , Protein Domains , Recombinant Proteins/chemistry , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL