Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 13(12)2021 12 17.
Article in English | MEDLINE | ID: covidwho-1580424

ABSTRACT

Infectious bronchitis virus (IBV), a gammacoronavirus, is an economically important virus to the poultry industry, as well as a significant welfare issue for chickens. As for all positive strand RNA viruses, IBV infection causes rearrangements of the host cell intracellular membranes to form replication organelles. Replication organelle formation is a highly conserved and vital step in the viral life cycle. Here, we investigate the localization of viral RNA synthesis and the link with replication organelles in host cells. We have shown that sites of viral RNA synthesis and virus-related dsRNA are associated with one another and, significantly, that they are located within a membrane-bound compartment within the cell. We have also shown that some viral RNA produced early in infection remains within these membranes throughout infection, while a proportion is trafficked to the cytoplasm. Importantly, we demonstrate conservation across all four coronavirus genera, including SARS-CoV-2. Understanding more about the replication of these viruses is imperative in order to effectively find ways to control them.


Subject(s)
Coronavirus/metabolism , Intracellular Membranes/metabolism , RNA, Viral/biosynthesis , Animals , Cell Line , Coronavirus/classification , Coronavirus/growth & development , Cytoplasm/metabolism , Humans , Infectious bronchitis virus/growth & development , Infectious bronchitis virus/metabolism , RNA, Double-Stranded/metabolism , Viral Replication Compartments/metabolism
2.
J Virol ; 95(14): e0066321, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1291038

ABSTRACT

RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.


Subject(s)
COVID-19 , Genome, Viral , Nucleotide Motifs , RNA Folding , RNA, Viral , SARS-CoV-2/physiology , Virus Replication , Animals , COVID-19/genetics , COVID-19/metabolism , Chlorocebus aethiops , HEK293 Cells , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , Vero Cells
3.
PLoS Pathog ; 17(6): e1009644, 2021 06.
Article in English | MEDLINE | ID: covidwho-1278205

ABSTRACT

Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Murine hepatitis virus/drug effects , Unfolded Protein Response/drug effects , Activating Transcription Factor 6/metabolism , Animals , Antiviral Agents/therapeutic use , Cell Line , Chlorocebus aethiops , Drug Delivery Systems , Endoribonucleases/metabolism , HEK293 Cells , Humans , Mice , Protein Serine-Threonine Kinases/metabolism , RNA-Seq , Vero Cells , Viral Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL