Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Relph, Katharine A.; Russell, Clark D.; Fairfield, Cameron J.; Turtle, Lance, de Silva, Thushan I.; Siggins, Matthew K.; Drake, Thomas M.; Thwaites, Ryan S.; Abrams, Simon, Moore, Shona C.; Hardwick, Hayley E.; Oosthuyzen, Wilna, Harrison, Ewen M.; Docherty, Annemarie B.; Openshaw, Peter J. M.; Baillie, J. Kenneth, Semple, Malcolm G.; Ho, Antonia, Baillie, J. Kenneth, Semple, Malcolm G.; Openshaw, Peter J. M.; Carson, Gail, Alex, Beatrice, Bach, Benjamin, Barclay, Wendy S.; Bogaert, Debby, Chand, Meera, Cooke, Graham S.; Docherty, Annemarie B.; Dunning, Jake, Filipe, Ana da Silva, Fletcher, Tom, Green, Christopher A.; Harrison, Ewen M.; Hiscox, Julian A.; Ho, Antonia Ying Wai, Horby, Peter W.; Ijaz, Samreen, Khoo, Saye, Klenerman, Paul, Law, Andrew, Lim, Wei Shen, Mentzer, Alexander J.; Merson, Laura, Meynert, Alison M.; Noursadeghi, Mahdad, Moore, Shona C.; Palmarini, Massimo, Paxton, William A.; Pollakis, Georgios, Price, Nicholas, Rambaut, Andrew, Robertson, David L.; Russell, Clark D.; Sancho-Shimizu, Vanessa, Scott, Janet T.; de Silva, Thushan, Sigfrid, Louise, Solomon, Tom, Sriskandan, Shiranee, Stuart, David, Summers, Charlotte, Tedder, Richard S.; Thomson, Emma C.; Roger Thompson, A. A.; Thwaites, Ryan S.; Turtle, Lance C. W.; Gupta, Rishi K.; Zambon, Maria, Hardwick, Hayley, Donohue, Chloe, Lyons, Ruth, Griffiths, Fiona, Oosthuyzen, Wilna, Norman, Lisa, Pius, Riinu, Drake, Thomas M.; Fairfield, Cameron J.; Knight, Stephen R.; McLean, Kenneth A.; Murphy, Derek, Shaw, Catherine A.; Dalton, Jo, Girvan, Michelle, Saviciute, Egle, Roberts, Stephanie, Harrison, Janet, Marsh, Laura, Connor, Marie, Halpin, Sophie, Jackson, Clare, Gamble, Carrol, Leeming, Gary, Law, Andrew, Wham, Murray, Clohisey, Sara, Hendry, Ross, Scott-Brown, James, Greenhalf, William, Shaw, Victoria, McDonald, Sara, Keating, Seán, Ahmed, Katie A.; Armstrong, Jane A.; Ashworth, Milton, Asiimwe, Innocent G.; Bakshi, Siddharth, Barlow, Samantha L.; Booth, Laura, Brennan, Benjamin, Bullock, Katie, Catterall, Benjamin W. A.; Clark, Jordan J.; Clarke, Emily A.; Cole, Sarah, Cooper, Louise, Cox, Helen, Davis, Christopher, Dincarslan, Oslem, Dunn, Chris, Dyer, Philip, Elliott, Angela, Evans, Anthony, Finch, Lorna, Fisher, Lewis W. S.; Foster, Terry, Garcia-Dorival, Isabel, Greenhalf, William, Gunning, Philip, Hartley, Catherine, Jensen, Rebecca L.; Jones, Christopher B.; Jones, Trevor R.; Khandaker, Shadia, King, Katharine, Kiy, Robyn T.; Koukorava, Chrysa, Lake, Annette, Lant, Suzannah, Latawiec, Diane, Lavelle-Langham, Lara, Lefteri, Daniella, Lett, Lauren, Livoti, Lucia A.; Mancini, Maria, McDonald, Sarah, McEvoy, Laurence, McLauchlan, John, Metelmann, Soeren, Miah, Nahida S.; Middleton, Joanna, Mitchell, Joyce, Moore, Shona C.; Murphy, Ellen G.; Penrice-Randal, Rebekah, Pilgrim, Jack, Prince, Tessa, Reynolds, Will, Matthew Ridley, P.; Sales, Debby, Shaw, Victoria E.; Shears, Rebecca K.; Small, Benjamin, Subramaniam, Krishanthi S.; Szemiel, Agnieska, Taggart, Aislynn, Tanianis-Hughes, Jolanta, Thomas, Jordan, Trochu, Erwan, van Tonder, Libby, Wilcock, Eve, Eunice Zhang, J.; Flaherty, Lisa, Maziere, Nicole, Cass, Emily, Doce Carracedo, Alejandra, Carlucci, Nicola, Holmes, Anthony, Massey, Hannah, Murphy, Lee, Wrobel, Nicola, McCafferty, Sarah, Morrice, Kirstie, MacLean, Alan, Adeniji, Kayode, Agranoff, Daniel, Agwuh, Ken, Ail, Dhiraj, Aldera, Erin L.; Alegria, Ana, Angus, Brian, Ashish, Abdul, Atkinson, Dougal, Bari, Shahedal, Barlow, Gavin, Barnass, Stella, Barrett, Nicholas, Bassford, Christopher, Basude, Sneha, Baxter, David, Beadsworth, Michael, Bernatoniene, Jolanta, Berridge, John, Best, Nicola, Bothma, Pieter, Chadwick, David, Brittain-Long, Robin, Bulteel, Naomi, Burden, Tom, Burtenshaw, Andrew, Caruth, Vikki, Chadwick, David, Chambler, Duncan, Chee, Nigel, Child, Jenny, Chukkambotla, Srikanth, Clark, Tom, Collini, Paul, Cosgrove, Catherine, Cupitt, Jason, Cutino-Moguel, Maria-Teresa, Dark, Paul, Dawson, Chris, Dervisevic, Samir, Donnison, Phil, Douthwaite, Sam, DuRand, Ingrid, Dushianthan, Ahilanadan, Dyer, Tristan, Evans, Cariad, Eziefula, Chi, Fegan, Christopher, Finn, Adam, Fullerton, Duncan, Garg, Sanjeev, Garg, Sanjeev, Garg, Atul, Gkrania-Klotsas, Effrossyni, Godden, Jo, Goldsmith, Arthur, Graham, Clive, Hardy, Elaine, Hartshorn, Stuart, Harvey, Daniel, Havalda, Peter, Hawcutt, Daniel B.; Hobrok, Maria, Hodgson, Luke, Hormis, Anil, Jacobs, Michael, Jain, Susan, Jennings, Paul, Kaliappan, Agilan, Kasipandian, Vidya, Kegg, Stephen, Kelsey, Michael, Kendall, Jason, Kerrison, Caroline, Kerslake, Ian, Koch, Oliver, Koduri, Gouri, Koshy, George, Laha, Shondipon, Laird, Steven, Larkin, Susan, Leiner, Tamas, Lillie, Patrick, Limb, James, Linnett, Vanessa, Little, Jeff, Lyttle, Mark, MacMahon, Michael, MacNaughton, Emily, Mankregod, Ravish, Masson, Huw, Matovu, Elijah, McCullough, Katherine, McEwen, Ruth, Meda, Manjula, Mills, Gary, Minton, Jane, Mirfenderesky, Mariyam, Mohandas, Kavya, Mok, Quen, Moon, James, Moore, Elinoor, Morgan, Patrick, Morris, Craig, Mortimore, Katherine, Moses, Samuel, Mpenge, Mbiye, Mulla, Rohinton, Murphy, Michael, Nagel, Megan, Nagarajan, Thapas, Nelson, Mark, O’Shea, Matthew K.; Otahal, Igor, Ostermann, Marlies, Pais, Mark, Panchatsharam, Selva, Papakonstantinou, Danai, Paraiso, Hassan, Patel, Brij, Pattison, Natalie, Pepperell, Justin, Peters, Mark, Phull, Mandeep, Pintus, Stefania, Pooni, Jagtur Singh, Post, Frank, Price, David, Prout, Rachel, Rae, Nikolas, Reschreiter, Henrik, Reynolds, Tim, Richardson, Neil, Roberts, Mark, Roberts, Devender, Rose, Alistair, Rousseau, Guy, Ryan, Brendan, Saluja, Taranprit, Shah, Aarti, Shanmuga, Prad, Sharma, Anil, Shawcross, Anna, Sizer, Jeremy, Shankar-Hari, Manu, Smith, Richard, Snelson, Catherine, Spittle, Nick, Staines, Nikki, Stambach, Tom, Stewart, Richard, Subudhi, Pradeep, Szakmany, Tamas, Tatham, Kate, Thomas, Jo, Thompson, Chris, Thompson, Robert, Tridente, Ascanio, Tupper-Carey, Darell, Twagira, Mary, Ustianowski, Andrew, Vallotton, Nick, Vincent-Smith, Lisa, Visuvanathan, Shico, Vuylsteke, Alan, Waddy, Sam, Wake, Rachel, Walden, Andrew, Welters, Ingeborg, Whitehouse, Tony, Whittaker, Paul, Whittington, Ashley, Papineni, Padmasayee, Wijesinghe, Meme, Williams, Martin, Wilson, Lawrence, Cole, Sarah, Winchester, Stephen, Wiselka, Martin, Wolverson, Adam, Wootton, Daniel G.; Workman, Andrew, Yates, Bryan, Young, Peter.
Open Forum Infectious Diseases ; 9(5), 2022.
Article in English | PMC | ID: covidwho-1821760

ABSTRACT

Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11–1.70] ng/mL vs 0.24 [0.10–0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51–.60]).

2.
The Lancet. Digital health ; 4(4):e220-e234, 2022.
Article in English | EuropePMC | ID: covidwho-1755949

ABSTRACT

Background Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. Methods We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. Findings Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years;0·52 [0·46–0·58], p<0·0001, for >80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. Interpretation Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. Funding UK National Institute for Health Research and UK Medical Research Council.

3.
HPB ; 2022.
Article in English | ScienceDirect | ID: covidwho-1739757

ABSTRACT

Background The effect of SARS-CoV-2 infection upon HPB cancer surgery perioperative outcomes is unclear. Establishing risk is key to individualising treatment pathways. Aim Identify the mortality rate and complications risk for HPB cancer elective surgery during the pandemic. Methods International, prospective, multicentre study of consecutive adult patients undergoing elective HPB cancer operations during the initial SARS-CoV-2 pandemic. Primary outcome was 30-day perioperative mortality. Secondary outcomes included major and surgery-specific 30-day complications. Multilevel cox proportional hazards and logistic regression models estimated association of SARS-CoV-2 and postoperative outcomes. Results Among 2,038 patients (259 hospitals, 49 countries;liver n=1,080;pancreas n=958) some 6.2%, n=127, contracted perioperative SARS-CoV-2. Perioperative mortality (9.4%, 12/127 vs 2.6%, 49/1911) and major complications (29.1%, 37/127 vs 13.2%, 253/1911) were higher with SARS-CoV-2 infection, persisting when age, sex and comorbidity were accounted for (HR survival 4.15, 95% CI 1.64 to 10.49;OR major complications 3.41, 95% CI 1.72 to 6.75). SARS-CoV-2 was associated with late postoperative bleeding (11.0% vs 4.2%) and grade B/C postoperative pancreatic fistula (17.9% vs 8.6%). Discussion SARS-CoV-2 infection was associated with significantly higher perioperative morbidity and mortality. Patients without SARS-CoV-2 had acceptable morbidity and mortality rates, highlighting the need to protect patients to enable safe ongoing surgery.

4.
Nephrol Dial Transplant ; 37(2): 271-284, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1648225

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is common in coronavirus disease 2019 (COVID-19). This study investigated adults hospitalized with COVID-19 and hypothesized that risk factors for AKI would include comorbidities and non-White race. METHODS: A prospective multicentre cohort study was performed using patients admitted to 254 UK hospitals with COVID-19 between 17 January 2020 and 5 December 2020. RESULTS: Of 85 687 patients, 2198 (2.6%) received acute kidney replacement therapy (KRT). Of 41 294 patients with biochemistry data, 13 000 (31.5%) had biochemical AKI: 8562 stage 1 (65.9%), 2609 stage 2 (20.1%) and 1829 stage 3 (14.1%). The main risk factors for KRT were chronic kidney disease (CKD) [adjusted odds ratio (aOR) 3.41: 95% confidence interval 3.06-3.81], male sex (aOR 2.43: 2.18-2.71) and Black race (aOR 2.17: 1.79-2.63). The main risk factors for biochemical AKI were admission respiratory rate >30 breaths per minute (aOR 1.68: 1.56-1.81), CKD (aOR 1.66: 1.57-1.76) and Black race (aOR 1.44: 1.28-1.61). There was a gradated rise in the risk of 28-day mortality by increasing severity of AKI: stage 1 aOR 1.58 (1.49-1.67), stage 2 aOR 2.41 (2.20-2.64), stage 3 aOR 3.50 (3.14-3.91) and KRT aOR 3.06 (2.75-3.39). AKI rates peaked in April 2020 and the subsequent fall in rates could not be explained by the use of dexamethasone or remdesivir. CONCLUSIONS: AKI is common in adults hospitalized with COVID-19 and it is associated with a heightened risk of mortality. Although the rates of AKI have fallen from the early months of the pandemic, high-risk patients should have their kidney function and fluid status monitored closely.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Cohort Studies , Hospital Mortality , Humans , Male , Prospective Studies , Retrospective Studies , Risk Factors , SARS-CoV-2 , United Kingdom , World Health Organization
5.
Lancet Respir Med ; 9(12): 1467-1478, 2021 12.
Article in English | MEDLINE | ID: covidwho-1545512

ABSTRACT

Persistent ill health after acute COVID-19-referred to as long COVID, the post-acute COVID-19 syndrome, or the post-COVID-19 condition-has emerged as a major concern. We undertook an international consensus exercise to identify research priorities with the aim of understanding the long-term effects of acute COVID-19, with a focus on people with pre-existing airways disease and the occurrence of new-onset airways disease and associated symptoms. 202 international experts were invited to submit a minimum of three research ideas. After a two-phase internal review process, a final list of 98 research topics was scored by 48 experts. Patients with pre-existing or post-COVID-19 airways disease contributed to the exercise by weighting selected criteria. The highest-ranked research idea focused on investigation of the relationship between prognostic scores at hospital admission and morbidity at 3 months and 12 months after hospital discharge in patients with and without pre-existing airways disease. High priority was also assigned to comparisons of the prevalence and severity of post-COVID-19 fatigue, sarcopenia, anxiety, depression, and risk of future cardiovascular complications in patients with and without pre-existing airways disease. Our approach has enabled development of a set of priorities that could inform future research studies and funding decisions. This prioritisation process could also be adapted to other, non-respiratory aspects of long COVID.


Subject(s)
COVID-19/complications , Respiration Disorders , Consensus , Humans , Research , SARS-CoV-2
6.
Thorax ; 2021 Nov 22.
Article in English | MEDLINE | ID: covidwho-1528562

ABSTRACT

PURPOSE: To prospectively validate two risk scores to predict mortality (4C Mortality) and in-hospital deterioration (4C Deterioration) among adults hospitalised with COVID-19. METHODS: Prospective observational cohort study of adults (age ≥18 years) with confirmed or highly suspected COVID-19 recruited into the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study in 306 hospitals across England, Scotland and Wales. Patients were recruited between 27 August 2020 and 17 February 2021, with at least 4 weeks follow-up before final data extraction. The main outcome measures were discrimination and calibration of models for in-hospital deterioration (defined as any requirement of ventilatory support or critical care, or death) and mortality, incorporating predefined subgroups. RESULTS: 76 588 participants were included, of whom 27 352 (37.4%) deteriorated and 12 581 (17.4%) died. Both the 4C Mortality (0.78 (0.77 to 0.78)) and 4C Deterioration scores (pooled C-statistic 0.76 (95% CI 0.75 to 0.77)) demonstrated consistent discrimination across all nine National Health Service regions, with similar performance metrics to the original validation cohorts. Calibration remained stable (4C Mortality: pooled slope 1.09, pooled calibration-in-the-large 0.12; 4C Deterioration: 1.00, -0.04), with no need for temporal recalibration during the second UK pandemic wave of hospital admissions. CONCLUSION: Both 4C risk stratification models demonstrate consistent performance to predict clinical deterioration and mortality in a large prospective second wave validation cohort of UK patients. Despite recent advances in the treatment and management of adults hospitalised with COVID-19, both scores can continue to inform clinical decision making. TRIAL REGISTRATION NUMBER: ISRCTN66726260.

7.
Journal of the Intensive Care Society ; : 17511437211052226, 2021.
Article in English | Sage | ID: covidwho-1480400

ABSTRACT

Background:We aimed to compare the prevalence and severity of fatigue in survivors of Covid-19 versus non-Covid-19 critical illness, and to explore potential associations between baseline characteristics and worse recovery.Methods:We conducted a secondary analysis of two prospectively collected datasets. The population included was 92 patients who received invasive mechanical ventilation (IMV) with Covid-19, and 240 patients who received IMV with non-Covid-19 illness before the pandemic. Follow-up data were collected post-hospital discharge using self-reported questionnaires. The main outcome measures were self-reported fatigue severity and the prevalence of severe fatigue (severity >7/10) 3 and 12-months post-hospital discharge.Results:Covid-19 IMV-patients were significantly younger with less prior comorbidity, and more males, than pre-pandemic IMV-patients. At 3-months, the prevalence (38.9% [7/18] vs. 27.1% [51/188]) and severity (median 5.5/10 vs 5.0/10) of fatigue were similar between the Covid-19 and pre-pandemic populations, respectively. At 6-months, the prevalence (10.3% [3/29] vs. 32.5% [54/166]) and severity (median 2.0/10 vs. 5.7/10) of fatigue were less in the Covid-19 cohort. In the total sample of IMV-patients included (i.e. all Covid-19 and pre-pandemic patients), having Covid-19 was significantly associated with less severe fatigue (severity <7/10) after adjusting for age, sex and prior comorbidity (adjusted OR 0.35 (95%CI 0.15?0.76, p=0.01).Conclusion:Fatigue may be less severe after Covid-19 than after other critical illness.

8.
Nephrol Dial Transplant ; 37(2): 271-284, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1475823

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is common in coronavirus disease 2019 (COVID-19). This study investigated adults hospitalized with COVID-19 and hypothesized that risk factors for AKI would include comorbidities and non-White race. METHODS: A prospective multicentre cohort study was performed using patients admitted to 254 UK hospitals with COVID-19 between 17 January 2020 and 5 December 2020. RESULTS: Of 85 687 patients, 2198 (2.6%) received acute kidney replacement therapy (KRT). Of 41 294 patients with biochemistry data, 13 000 (31.5%) had biochemical AKI: 8562 stage 1 (65.9%), 2609 stage 2 (20.1%) and 1829 stage 3 (14.1%). The main risk factors for KRT were chronic kidney disease (CKD) [adjusted odds ratio (aOR) 3.41: 95% confidence interval 3.06-3.81], male sex (aOR 2.43: 2.18-2.71) and Black race (aOR 2.17: 1.79-2.63). The main risk factors for biochemical AKI were admission respiratory rate >30 breaths per minute (aOR 1.68: 1.56-1.81), CKD (aOR 1.66: 1.57-1.76) and Black race (aOR 1.44: 1.28-1.61). There was a gradated rise in the risk of 28-day mortality by increasing severity of AKI: stage 1 aOR 1.58 (1.49-1.67), stage 2 aOR 2.41 (2.20-2.64), stage 3 aOR 3.50 (3.14-3.91) and KRT aOR 3.06 (2.75-3.39). AKI rates peaked in April 2020 and the subsequent fall in rates could not be explained by the use of dexamethasone or remdesivir. CONCLUSIONS: AKI is common in adults hospitalized with COVID-19 and it is associated with a heightened risk of mortality. Although the rates of AKI have fallen from the early months of the pandemic, high-risk patients should have their kidney function and fluid status monitored closely.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Cohort Studies , Hospital Mortality , Humans , Male , Prospective Studies , Retrospective Studies , Risk Factors , SARS-CoV-2 , United Kingdom , World Health Organization
9.
Clin Exp Allergy ; 51(9): 1107-1120, 2021 09.
Article in English | MEDLINE | ID: covidwho-1398367

ABSTRACT

BACKGROUND: The long-term sequalae of COVID-19 remain poorly characterized. We assessed persistent symptoms in previously hospitalized patients with COVID-19 and assessed potential risk factors. METHODS: Data were collected from patients discharged from 4 hospitals in Moscow, Russia between 8 April and 10 July 2020. Participants were interviewed via telephone using an ISARIC Long-term Follow-up Study questionnaire. RESULTS: 2,649 of 4755 (56%) discharged patients were successfully evaluated, at median 218 (IQR 200, 236) days post-discharge. COVID-19 diagnosis was clinical in 1291 and molecular in 1358. Most cases were mild, but 902 (34%) required supplemental oxygen and 68 (2.6%) needed ventilatory support. Median age was 56 years (IQR 46, 66) and 1,353 (51.1%) were women. Persistent symptoms were reported by 1247 (47.1%) participants, with fatigue (21.2%), shortness of breath (14.5%) and forgetfulness (9.1%) the most common symptoms and chronic fatigue (25%) and respiratory (17.2%) the most common symptom categories. Female sex was associated with any persistent symptom category OR 1.83 (95% CI 1.55 to 2.17) with association being strongest for dermatological (3.26, 2.36 to 4.57) symptoms. Asthma and chronic pulmonary disease were not associated with persistent symptoms overall, but asthma was associated with neurological (1.95, 1.25 to 2.98) and mood and behavioural changes (2.02, 1.24 to 3.18), and chronic pulmonary disease was associated with chronic fatigue (1.68, 1.21 to 2.32). CONCLUSIONS: Almost half of adults admitted to hospital due to COVID-19 reported persistent symptoms 6 to 8 months after discharge. Fatigue and respiratory symptoms were most common, and female sex was associated with persistent symptoms.


Subject(s)
Aftercare , COVID-19 Testing , COVID-19/drug therapy , COVID-19/epidemiology , Hospitalization , SARS-CoV-2 , Surveys and Questionnaires , Adolescent , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Risk Factors , Russia/epidemiology
10.
Lancet Reg Health Eur ; 8: 100186, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1397545

ABSTRACT

BACKGROUND: This study sought to establish the long-term effects of Covid-19 following hospitalisation. METHODS: 327 hospitalised participants, with SARS-CoV-2 infection were recruited into a prospective multicentre cohort study at least 3 months post-discharge. The primary outcome was self-reported recovery at least ninety days after initial Covid-19 symptom onset. Secondary outcomes included new symptoms, disability (Washington group short scale), breathlessness (MRC Dyspnoea scale) and quality of life (EQ5D-5L). FINDINGS: 55% of participants reported not feeling fully recovered. 93% reported persistent symptoms, with fatigue the most common (83%), followed by breathlessness (54%). 47% reported an increase in MRC dyspnoea scale of at least one grade. New or worse disability was reported by 24% of participants. The EQ5D-5L summary index was significantly worse following acute illness (median difference 0.1 points on a scale of 0 to 1, IQR: -0.2 to 0.0). Females under the age of 50 years were five times less likely to report feeling recovered (adjusted OR 5.09, 95% CI 1.64 to 15.74), were more likely to have greater disability (adjusted OR 4.22, 95% CI 1.12 to 15.94), twice as likely to report worse fatigue (adjusted OR 2.06, 95% CI 0.81 to 3.31) and seven times more likely to become more breathless (adjusted OR 7.15, 95% CI 2.24 to 22.83) than men of the same age. INTERPRETATION: Survivors of Covid-19 experienced long-term symptoms, new disability, increased breathlessness, and reduced quality of life. These findings were present in young, previously healthy working age adults, and were most common in younger females. FUNDING: National Institute for Health Research, UK Medical Research Council, Wellcome Trust, Department for International Development and the Bill and Melinda Gates Foundation.

11.
Lancet Respir Med ; 9(7): 773-785, 2021 07.
Article in English | MEDLINE | ID: covidwho-1337040

ABSTRACT

BACKGROUND: Mortality rates in hospitalised patients with COVID-19 in the UK appeared to decline during the first wave of the pandemic. We aimed to quantify potential drivers of this change and identify groups of patients who remain at high risk of dying in hospital. METHODS: In this multicentre prospective observational cohort study, the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK recruited a prospective cohort of patients with COVID-19 admitted to 247 acute hospitals in England, Scotland, and Wales during the first wave of the pandemic (between March 9 and Aug 2, 2020). We included all patients aged 18 years and older with clinical signs and symptoms of COVID-19 or confirmed COVID-19 (by RT-PCR test) from assumed community-acquired infection. We did a three-way decomposition mediation analysis using natural effects models to explore associations between week of admission and in-hospital mortality, adjusting for confounders (demographics, comorbidities, and severity of illness) and quantifying potential mediators (level of respiratory support and steroid treatment). The primary outcome was weekly in-hospital mortality at 28 days, defined as the proportion of patients who had died within 28 days of admission of all patients admitted in the observed week, and it was assessed in all patients with an outcome. This study is registered with the ISRCTN Registry, ISRCTN66726260. FINDINGS: Between March 9, and Aug 2, 2020, we recruited 80 713 patients, of whom 63 972 were eligible and included in the study. Unadjusted weekly in-hospital mortality declined from 32·3% (95% CI 31·8-32·7) in March 9 to April 26, 2020, to 16·4% (15·0-17·8) in June 15 to Aug 2, 2020. Reductions in mortality were observed in all age groups, in all ethnic groups, for both sexes, and in patients with and without comorbidities. After adjustment, there was a 32% reduction in the risk of mortality per 7-week period (odds ratio [OR] 0·68 [95% CI 0·65-0·71]). The higher proportions of patients with severe disease and comorbidities earlier in the first wave (March and April) than in June and July accounted for 10·2% of this reduction. The use of respiratory support changed during the first wave, with gradually increased use of non-invasive ventilation over the first wave. Changes in respiratory support and use of steroids accounted for 22·2%, OR 0·95 (0·94-0·95) of the reduction in in-hospital mortality. INTERPRETATION: The reduction in in-hospital mortality in patients with COVID-19 during the first wave in the UK was partly accounted for by changes in the case-mix and illness severity. A significant reduction in in-hospital mortality was associated with differences in respiratory support and critical care use, which could partly reflect accrual of clinical knowledge. The remaining improvement in in-hospital mortality is not explained by these factors, and could be associated with changes in community behaviour, inoculum dose, and hospital capacity strain. FUNDING: National Institute for Health Research and the Medical Research Council.


Subject(s)
COVID-19/mortality , Hospital Mortality , Aged , Aged, 80 and over , COVID-19/epidemiology , Clinical Protocols , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology , World Health Organization
12.
Lancet Respir Med ; 9(7): 699-711, 2021 07.
Article in English | MEDLINE | ID: covidwho-1337033

ABSTRACT

BACKGROUND: Studies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use. METHODS: We analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16-49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting ß-agonists [SABAs], and long-acting ß-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma. FINDINGS: 75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16-49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16-49 years: adjusted odds ratio [OR] 1·20 [95% CI 1·05-1·37]; p=0·0080; patients aged ≥50 years: adjusted OR 1·17 [1·08-1·27]; p<0·0001), and patients aged 50 years and older with chronic pulmonary disease (with or without asthma) were significantly less likely than those without a respiratory condition to receive critical care (adjusted OR 0·66 [0·60-0·72] for those without asthma and 0·74 [0·62-0·87] for those with asthma; p<0·0001 for both). In patients aged 16-49 years, only those with severe asthma had a significant increase in mortality compared to those with no asthma (adjusted hazard ratio [HR] 1·17 [95% CI 0·73-1·86] for those on no asthma therapy, 0·99 [0·61-1·58] for those on SABAs only, 0·94 [0·62-1·43] for those on inhaled corticosteroids only, 1·02 [0·67-1·54] for those on inhaled corticosteroids plus LABAs, and 1·96 [1·25-3·08] for those with severe asthma). Among patients aged 50 years and older, those with chronic pulmonary disease had a significantly increased mortality risk, regardless of inhaled corticosteroid use, compared to patients without an underlying respiratory condition (adjusted HR 1·16 [95% CI 1·12-1·22] for those not on inhaled corticosteroids, and 1·10 [1·04-1·16] for those on inhaled corticosteroids; p<0·0001). Patients aged 50 years and older with severe asthma also had an increased mortality risk compared to those not on asthma therapy (adjusted HR 1·24 [95% CI 1·04-1·49]). In patients aged 50 years and older, inhaled corticosteroid use within 2 weeks of hospital admission was associated with decreased mortality in those with asthma, compared to those without an underlying respiratory condition (adjusted HR 0·86 [95% CI 0·80-0·92]). INTERPRETATION: Underlying respiratory conditions are common in patients admitted to hospital with COVID-19. Regardless of the severity of symptoms at admission and comorbidities, patients with asthma were more likely, and those with chronic pulmonary disease less likely, to receive critical care than patients without an underlying respiratory condition. In patients aged 16 years and older, severe asthma was associated with increased mortality compared to non-severe asthma. In patients aged 50 years and older, inhaled corticosteroid use in those with asthma was associated with lower mortality than in patients without an underlying respiratory condition; patients with chronic pulmonary disease had significantly increased mortality compared to those with no underlying respiratory condition, regardless of inhaled corticosteroid use. Our results suggest that the use of inhaled corticosteroids, within 2 weeks of admission, improves survival for patients aged 50 years and older with asthma, but not for those with chronic pulmonary disease. FUNDING: National Institute for Health Research, Medical Research Council, NIHR Health Protection Research Units in Emerging and Zoonotic Infections at the University of Liverpool and in Respiratory Infections at Imperial College London in partnership with Public Health England.


Subject(s)
Asthma/complications , Asthma/mortality , COVID-19/complications , COVID-19/mortality , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/mortality , Adolescent , Adult , Clinical Protocols , Cohort Studies , Female , Hospital Mortality , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Risk Assessment , United Kingdom , World Health Organization , Young Adult
13.
Lancet ; 398(10296): 223-237, 2021 07 17.
Article in English | MEDLINE | ID: covidwho-1313499

ABSTRACT

BACKGROUND: COVID-19 is a multisystem disease and patients who survive might have in-hospital complications. These complications are likely to have important short-term and long-term consequences for patients, health-care utilisation, health-care system preparedness, and society amidst the ongoing COVID-19 pandemic. Our aim was to characterise the extent and effect of COVID-19 complications, particularly in those who survive, using the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK. METHODS: We did a prospective, multicentre cohort study in 302 UK health-care facilities. Adult patients aged 19 years or older, with confirmed or highly suspected SARS-CoV-2 infection leading to COVID-19 were included in the study. The primary outcome of this study was the incidence of in-hospital complications, defined as organ-specific diagnoses occurring alone or in addition to any hallmarks of COVID-19 illness. We used multilevel logistic regression and survival models to explore associations between these outcomes and in-hospital complications, age, and pre-existing comorbidities. FINDINGS: Between Jan 17 and Aug 4, 2020, 80 388 patients were included in the study. Of the patients admitted to hospital for management of COVID-19, 49·7% (36 367 of 73 197) had at least one complication. The mean age of our cohort was 71·1 years (SD 18·7), with 56·0% (41 025 of 73 197) being male and 81·0% (59 289 of 73 197) having at least one comorbidity. Males and those aged older than 60 years were most likely to have a complication (aged ≥60 years: 54·5% [16 579 of 30 416] in males and 48·2% [11 707 of 24 288] in females; aged <60 years: 48·8% [5179 of 10 609] in males and 36·6% [2814 of 7689] in females). Renal (24·3%, 17 752 of 73 197), complex respiratory (18·4%, 13 486 of 73 197), and systemic (16·3%, 11 895 of 73 197) complications were the most frequent. Cardiovascular (12·3%, 8973 of 73 197), neurological (4·3%, 3115 of 73 197), and gastrointestinal or liver (0·8%, 7901 of 73 197) complications were also reported. INTERPRETATION: Complications and worse functional outcomes in patients admitted to hospital with COVID-19 are high, even in young, previously healthy individuals. Acute complications are associated with reduced ability to self-care at discharge, with neurological complications being associated with the worst functional outcomes. COVID-19 complications are likely to cause a substantial strain on health and social care in the coming years. These data will help in the design and provision of services aimed at the post-hospitalisation care of patients with COVID-19. FUNDING: National Institute for Health Research and the UK Medical Research Council.


Subject(s)
COVID-19/complications , Clinical Protocols/standards , Comorbidity , Hospital Mortality , Hospitalization , Age Factors , Aged , COVID-19/epidemiology , Cardiovascular Diseases , Female , Hospitals , Humans , Male , Nervous System Diseases , Prospective Studies , Respiratory Tract Diseases , SARS-CoV-2 , United Kingdom/epidemiology , World Health Organization
14.
Lancet Microbe ; 2(8): e354-e365, 2021 08.
Article in English | MEDLINE | ID: covidwho-1253810

ABSTRACT

BACKGROUND: Microbiological characterisation of co-infections and secondary infections in patients with COVID-19 is lacking, and antimicrobial use is high. We aimed to describe microbiologically confirmed co-infections and secondary infections, and antimicrobial use, in patients admitted to hospital with COVID-19. METHODS: The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study is an ongoing, prospective cohort study recruiting inpatients from 260 hospitals in England, Scotland, and Wales, conducted by the ISARIC Coronavirus Clinical Characterisation Consortium. Patients with a confirmed or clinician-defined high likelihood of SARS-CoV-2 infection were eligible for inclusion in the ISARIC WHO CCP-UK study. For this specific study, we excluded patients with a recorded negative SARS-CoV-2 test result and those without a recorded outcome at 28 days after admission. Demographic, clinical, laboratory, therapeutic, and outcome data were collected using a prespecified case report form. Organisms considered clinically insignificant were excluded. FINDINGS: We analysed data from 48 902 patients admitted to hospital between Feb 6 and June 8, 2020. The median patient age was 74 years (IQR 59-84) and 20 786 (42·6%) of 48 765 patients were female. Microbiological investigations were recorded for 8649 (17·7%) of 48 902 patients, with clinically significant COVID-19-related respiratory or bloodstream culture results recorded for 1107 patients. 762 (70·6%) of 1080 infections were secondary, occurring more than 2 days after hospital admission. Staphylococcus aureus and Haemophilus influenzae were the most common pathogens causing respiratory co-infections (diagnosed ≤2 days after admission), with Enterobacteriaceae and S aureus most common in secondary respiratory infections. Bloodstream infections were most frequently caused by Escherichia coli and S aureus. Among patients with available data, 13 390 (37·0%) of 36 145 had received antimicrobials in the community for this illness episode before hospital admission and 39 258 (85·2%) of 46 061 patients with inpatient antimicrobial data received one or more antimicrobials at some point during their admission (highest for patients in critical care). We identified frequent use of broad-spectrum agents and use of carbapenems rather than carbapenem-sparing alternatives. INTERPRETATION: In patients admitted to hospital with COVID-19, microbiologically confirmed bacterial infections are rare, and more likely to be secondary infections. Gram-negative organisms and S aureus are the predominant pathogens. The frequency and nature of antimicrobial use are concerning, but tractable targets for stewardship interventions exist. FUNDING: National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, UK Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, and NIHR HPRU in Respiratory Infections at Imperial College London.


Subject(s)
Anti-Infective Agents , COVID-19 , Coinfection , Respiratory Tract Infections , Aged , Aged, 80 and over , COVID-19/epidemiology , Coinfection/drug therapy , Female , Humans , Male , Middle Aged , Pandemics , Prospective Studies , Respiratory Tract Infections/epidemiology , SARS-CoV-2 , United Kingdom/epidemiology , World Health Organization
15.
Lancet Rheumatol ; 3(7): e498-e506, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1230832

ABSTRACT

BACKGROUND: Early in the pandemic it was suggested that pre-existing use of non-steroidal anti-inflammatory drugs (NSAIDs) could lead to increased disease severity in patients with COVID-19. NSAIDs are an important analgesic, particularly in those with rheumatological disease, and are widely available to the general public without prescription. Evidence from community studies, administrative data, and small studies of hospitalised patients suggest NSAIDs are not associated with poorer COVID-19 outcomes. We aimed to characterise the safety of NSAIDs and identify whether pre-existing NSAID use was associated with increased severity of COVID-19 disease. METHODS: This prospective, multicentre cohort study included patients of any age admitted to hospital with a confirmed or highly suspected SARS-CoV-2 infection leading to COVID-19 between Jan 17 and Aug 10, 2020. The primary outcome was in-hospital mortality, and secondary outcomes were disease severity at presentation, admission to critical care, receipt of invasive ventilation, receipt of non-invasive ventilation, use of supplementary oxygen, and acute kidney injury. NSAID use was required to be within the 2 weeks before hospital admission. We used logistic regression to estimate the effects of NSAIDs and adjust for confounding variables. We used propensity score matching to further estimate effects of NSAIDS while accounting for covariate differences in populations. RESULTS: Between Jan 17 and Aug 10, 2020, we enrolled 78 674 patients across 255 health-care facilities in England, Scotland, and Wales. 72 179 patients had death outcomes available for matching; 40 406 (56·2%) of 71 915 were men, 31 509 (43·8%) were women. In this cohort, 4211 (5·8%) patients were recorded as taking systemic NSAIDs before admission to hospital. Following propensity score matching, balanced groups of NSAIDs users and NSAIDs non-users were obtained (4205 patients in each group). At hospital admission, we observed no significant differences in severity between exposure groups. After adjusting for explanatory variables, NSAID use was not associated with worse in-hospital mortality (matched OR 0·95, 95% CI 0·84-1·07; p=0·35), critical care admission (1·01, 0·87-1·17; p=0·89), requirement for invasive ventilation (0·96, 0·80-1·17; p=0·69), requirement for non-invasive ventilation (1·12, 0·96-1·32; p=0·14), requirement for oxygen (1·00, 0·89-1·12; p=0·97), or occurrence of acute kidney injury (1·08, 0·92-1·26; p=0·33). INTERPRETATION: NSAID use is not associated with higher mortality or increased severity of COVID-19. Policy makers should consider reviewing issued advice around NSAID prescribing and COVID-19 severity. FUNDING: National Institute for Health Research and Medical Research Council.

16.
Lancet Respir Med ; 9(4): 349-359, 2021 04.
Article in English | MEDLINE | ID: covidwho-1180127

ABSTRACT

BACKGROUND: Prognostic models to predict the risk of clinical deterioration in acute COVID-19 cases are urgently required to inform clinical management decisions. METHODS: We developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) among consecutively hospitalised adults with highly suspected or confirmed COVID-19 who were prospectively recruited to the International Severe Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) study across 260 hospitals in England, Scotland, and Wales. Candidate predictors that were specified a priori were considered for inclusion in the model on the basis of previous prognostic scores and emerging literature describing routinely measured biomarkers associated with COVID-19 prognosis. We used internal-external cross-validation to evaluate discrimination, calibration, and clinical utility across eight National Health Service (NHS) regions in the development cohort. We further validated the final model in held-out data from an additional NHS region (London). FINDINGS: 74 944 participants (recruited between Feb 6 and Aug 26, 2020) were included, of whom 31 924 (43·2%) of 73 948 with available outcomes met the composite clinical deterioration outcome. In internal-external cross-validation in the development cohort of 66 705 participants, the selected model (comprising 11 predictors routinely measured at the point of hospital admission) showed consistent discrimination, calibration, and clinical utility across all eight NHS regions. In held-out data from London (n=8239), the model showed a similarly consistent performance (C-statistic 0·77 [95% CI 0·76 to 0·78]; calibration-in-the-large 0·00 [-0·05 to 0·05]); calibration slope 0·96 [0·91 to 1·01]), and greater net benefit than any other reproducible prognostic model. INTERPRETATION: The 4C Deterioration model has strong potential for clinical utility and generalisability to predict clinical deterioration and inform decision making among adults hospitalised with COVID-19. FUNDING: National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, NIHR HPRU in Respiratory Infections at Imperial College London.


Subject(s)
COVID-19/diagnosis , Clinical Decision Rules , Clinical Decision-Making/methods , Clinical Deterioration , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/therapy , Critical Care/statistics & numerical data , Female , Hospital Mortality , Humans , Intensive Care Units/statistics & numerical data , Logistic Models , Male , Middle Aged , Patient Admission/statistics & numerical data , Prognosis , Prospective Studies , Reproducibility of Results , Respiration, Artificial/statistics & numerical data , SARS-CoV-2/isolation & purification , Severity of Illness Index , United Kingdom/epidemiology
17.
BMJ Open ; 11(3): e043887, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1127585

ABSTRACT

INTRODUCTION: Very little is known about possible clinical sequelae that may persist after resolution of acute COVID-19. A recent longitudinal cohort from Italy including 143 patients followed up after hospitalisation with COVID-19 reported that 87% had at least one ongoing symptom at 60-day follow-up. Early indications suggest that patients with COVID-19 may need even more psychological support than typical intensive care unit patients. The assessment of risk factors for longer term consequences requires a longitudinal study linked to data on pre-existing conditions and care received during the acute phase of illness. The primary aim of this study is to characterise physical and psychosocial sequelae in patients post-COVID-19 hospital discharge. METHODS AND ANALYSIS: This is an international open-access prospective, observational multisite study. This protocol is linked with the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) and the WHO's Clinical Characterisation Protocol, which includes patients with suspected or confirmed COVID-19 during hospitalisation. This protocol will follow-up a subset of patients with confirmed COVID-19 using standardised surveys to measure longer term physical and psychosocial sequelae. The data will be linked with the acute phase data. Statistical analyses will be undertaken to characterise groups most likely to be affected by sequelae of COVID-19. The open-access follow-up survey can be used as a data collection tool by other follow-up studies, to facilitate data harmonisation and to identify subsets of patients for further in-depth follow-up. The outcomes of this study will inform strategies to prevent long-term consequences; inform clinical management, interventional studies, rehabilitation and public health management to reduce overall morbidity; and improve long-term outcomes of COVID-19. ETHICS AND DISSEMINATION: The protocol and survey are open access to enable low-resourced sites to join the study to facilitate global standardised, longitudinal data collection. Ethical approval has been given by sites in Colombia, Ghana, Italy, Norway, Russia, the UK and South Africa. New sites are welcome to join this collaborative study at any time. Sites interested in adopting the protocol as it is or in an adapted version are responsible for ensuring that local sponsorship and ethical approvals in place as appropriate. The tools are available on the ISARIC website (www.isaric.org). PROTOCOL REGISTRATION NUMBER: osf.io/c5rw3/ PROTOCOL VERSION: 3 August 2020 EUROQOL ID: 37035.


Subject(s)
COVID-19/diagnosis , COVID-19/psychology , Colombia , Ghana , Humans , Italy , Longitudinal Studies , Norway , Prospective Studies , Risk Factors , Russia , South Africa , United Kingdom
18.
Am J Respir Crit Care Med ; 202(12): 1656-1665, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-810560

ABSTRACT

Rationale: The impact of coronavirus disease (COVID-19) on patients with interstitial lung disease (ILD) has not been established.Objectives: To assess outcomes in patients with ILD hospitalized for COVID-19 versus those without ILD in a contemporaneous age-, sex-, and comorbidity-matched population.Methods: An international multicenter audit of patients with a prior diagnosis of ILD admitted to the hospital with COVID-19 between March 1 and May 1, 2020, was undertaken and compared with patients without ILD, obtained from the ISARIC4C (International Severe Acute Respiratory and Emerging Infection Consortium Coronavirus Clinical Characterisation Consortium) cohort, admitted with COVID-19 over the same period. The primary outcome was survival. Secondary analysis distinguished idiopathic pulmonary fibrosis from non-idiopathic pulmonary fibrosis ILD and used lung function to determine the greatest risks of death.Measurements and Main Results: Data from 349 patients with ILD across Europe were included, of whom 161 were admitted to the hospital with laboratory or clinical evidence of COVID-19 and eligible for propensity score matching. Overall mortality was 49% (79/161) in patients with ILD with COVID-19. After matching, patients with ILD with COVID-19 had significantly poorer survival (hazard ratio [HR], 1.60; confidence interval, 1.17-2.18; P = 0.003) than age-, sex-, and comorbidity-matched controls without ILD. Patients with an FVC of <80% had an increased risk of death versus patients with FVC ≥80% (HR, 1.72; 1.05-2.83). Furthermore, obese patients with ILD had an elevated risk of death (HR, 2.27; 1.39-3.71).Conclusions: Patients with ILD are at increased risk of death from COVID-19, particularly those with poor lung function and obesity. Stringent precautions should be taken to avoid COVID-19 in patients with ILD.


Subject(s)
COVID-19/epidemiology , Hospitalization/statistics & numerical data , Lung Diseases, Interstitial/epidemiology , Aged , Aged, 80 and over , Comorbidity , Disease Progression , Europe/epidemiology , Female , Humans , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/therapy , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
19.
BMJ ; 370: m3339, 2020 09 09.
Article in English | MEDLINE | ID: covidwho-751530

ABSTRACT

OBJECTIVE: To develop and validate a pragmatic risk score to predict mortality in patients admitted to hospital with coronavirus disease 2019 (covid-19). DESIGN: Prospective observational cohort study. SETTING: International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) World Health Organization (WHO) Clinical Characterisation Protocol UK (CCP-UK) study (performed by the ISARIC Coronavirus Clinical Characterisation Consortium-ISARIC-4C) in 260 hospitals across England, Scotland, and Wales. Model training was performed on a cohort of patients recruited between 6 February and 20 May 2020, with validation conducted on a second cohort of patients recruited after model development between 21 May and 29 June 2020. PARTICIPANTS: Adults (age ≥18 years) admitted to hospital with covid-19 at least four weeks before final data extraction. MAIN OUTCOME MEASURE: In-hospital mortality. RESULTS: 35 463 patients were included in the derivation dataset (mortality rate 32.2%) and 22 361 in the validation dataset (mortality rate 30.1%). The final 4C Mortality Score included eight variables readily available at initial hospital assessment: age, sex, number of comorbidities, respiratory rate, peripheral oxygen saturation, level of consciousness, urea level, and C reactive protein (score range 0-21 points). The 4C Score showed high discrimination for mortality (derivation cohort: area under the receiver operating characteristic curve 0.79, 95% confidence interval 0.78 to 0.79; validation cohort: 0.77, 0.76 to 0.77) with excellent calibration (validation: calibration-in-the-large=0, slope=1.0). Patients with a score of at least 15 (n=4158, 19%) had a 62% mortality (positive predictive value 62%) compared with 1% mortality for those with a score of 3 or less (n=1650, 7%; negative predictive value 99%). Discriminatory performance was higher than 15 pre-existing risk stratification scores (area under the receiver operating characteristic curve range 0.61-0.76), with scores developed in other covid-19 cohorts often performing poorly (range 0.63-0.73). CONCLUSIONS: An easy-to-use risk stratification score has been developed and validated based on commonly available parameters at hospital presentation. The 4C Mortality Score outperformed existing scores, showed utility to directly inform clinical decision making, and can be used to stratify patients admitted to hospital with covid-19 into different management groups. The score should be further validated to determine its applicability in other populations. STUDY REGISTRATION: ISRCTN66726260.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Hospitalization , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Aged , Aged, 80 and over , COVID-19 , Clinical Protocols , Cohort Studies , Female , Hospital Mortality , Humans , Male , Middle Aged , Pandemics , Predictive Value of Tests , ROC Curve , Risk Assessment , SARS-CoV-2 , Survival Rate , United Kingdom
20.
BMJ ; 370: m3249, 2020 08 27.
Article in English | MEDLINE | ID: covidwho-733172

ABSTRACT

OBJECTIVE: To characterise the clinical features of children and young people admitted to hospital with laboratory confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the UK and explore factors associated with admission to critical care, mortality, and development of multisystem inflammatory syndrome in children and adolescents temporarily related to coronavirus disease 2019 (covid-19) (MIS-C). DESIGN: Prospective observational cohort study with rapid data gathering and near real time analysis. SETTING: 260 hospitals in England, Wales, and Scotland between 17 January and 3 July 2020, with a minimum follow-up time of two weeks (to 17 July 2020). PARTICIPANTS: 651 children and young people aged less than 19 years admitted to 138 hospitals and enrolled into the International Severe Acute Respiratory and emergency Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK study with laboratory confirmed SARS-CoV-2. MAIN OUTCOME MEASURES: Admission to critical care (high dependency or intensive care), in-hospital mortality, or meeting the WHO preliminary case definition for MIS-C. RESULTS: Median age was 4.6 (interquartile range 0.3-13.7) years, 35% (225/651) were under 12 months old, and 56% (367/650) were male. 57% (330/576) were white, 12% (67/576) South Asian, and 10% (56/576) black. 42% (276/651) had at least one recorded comorbidity. A systemic mucocutaneous-enteric cluster of symptoms was identified, which encompassed the symptoms for the WHO MIS-C criteria. 18% (116/632) of children were admitted to critical care. On multivariable analysis, this was associated with age under 1 month (odds ratio 3.21, 95% confidence interval 1.36 to 7.66; P=0.008), age 10-14 years (3.23, 1.55 to 6.99; P=0.002), and black ethnicity (2.82, 1.41 to 5.57; P=0.003). Six (1%) of 627 patients died in hospital, all of whom had profound comorbidity. 11% (52/456) met the WHO MIS-C criteria, with the first patient developing symptoms in mid-March. Children meeting MIS-C criteria were older (median age 10.7 (8.3-14.1) v 1.6 (0.2-12.9) years; P<0.001) and more likely to be of non-white ethnicity (64% (29/45) v 42% (148/355); P=0.004). Children with MIS-C were five times more likely to be admitted to critical care (73% (38/52) v 15% (62/404); P<0.001). In addition to the WHO criteria, children with MIS-C were more likely to present with fatigue (51% (24/47) v 28% (86/302); P=0.004), headache (34% (16/47) v 10% (26/263); P<0.001), myalgia (34% (15/44) v 8% (21/270); P<0.001), sore throat (30% (14/47) v (12% (34/284); P=0.003), and lymphadenopathy (20% (9/46) v 3% (10/318); P<0.001) and to have a platelet count of less than 150 × 109/L (32% (16/50) v 11% (38/348); P<0.001) than children who did not have MIS-C. No deaths occurred in the MIS-C group. CONCLUSIONS: Children and young people have less severe acute covid-19 than adults. A systemic mucocutaneous-enteric symptom cluster was also identified in acute cases that shares features with MIS-C. This study provides additional evidence for refining the WHO MIS-C preliminary case definition. Children meeting the MIS-C criteria have different demographic and clinical features depending on whether they have acute SARS-CoV-2 infection (polymerase chain reaction positive) or are post-acute (antibody positive). STUDY REGISTRATION: ISRCTN66726260.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Hospitalization/statistics & numerical data , Pneumonia, Viral/epidemiology , Systemic Inflammatory Response Syndrome/epidemiology , Adolescent , Age Factors , COVID-19 , Child , Child, Preschool , Cohort Studies , Coronavirus Infections/complications , Coronavirus Infections/therapy , Critical Care , Female , Hospital Mortality , Humans , Infant , Infant, Newborn , Male , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Respiration, Artificial , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/therapy , United Kingdom , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL