ABSTRACT
A number of transmission models for airborne pathogens transmission, as required to understand airborne infectious diseases such as COVID-19, have been proposed independently from each other, at different scales, and by researchers from various disciplines. We propose a communication engineering approach that blends different disciplines such as epidemiology, biology, medicine, and fluid dynamics. The aim is to present a unified framework using communication engineering, and to highlight future research directions for modeling the spread of infectious diseases through airborne transmission. We introduce the concept of mobile human ad hoc networks (MoHANETs), which exploits the similarity of airborne transmission-driven human groups with mobile ad hoc networks and uses molecular communication as the enabling paradigm. In the MoHANET architecture, a layered structure is employed where the infectious human emitting pathogen-laden droplets and the exposed human to these droplets are considered as the transmitter and receiver, respectively. Our proof-of-concept results, which we validated using empirical COVID-19 data, clearly demonstrate the ability of our MoHANET architecture to predict the dynamics of infectious diseases by considering the propagation of pathogen-laden droplets, their reception and mobility of humans.
ABSTRACT
This contribution exploits the duality between a viral infection process and macroscopic air-based molecular communication. Airborne aerosol and droplet transmission through human respiratory processes is modeled as an instance of a multiuser molecular communication scenario employing respiratory-event-driven molecular variable-concentration shift keying. Modeling is aided by experiments that are motivated by a macroscopic air-based molecular communication testbed. In artificially induced coughs, a saturated aqueous solution containing a fluorescent dye mixed with saliva is released by an adult test person. The emitted particles are made visible by means of optical detection exploiting the fluorescent dye. The number of particles recorded is significantly higher in test series without mouth and nose protection than in those with a well-fitting medical mask. A simulation tool for macroscopic molecular communication processes is extended and used for estimating the transmission of infectious aerosols in different environments. Towards this goal, parameters obtained through self experiments are taken. The work is inspired by the recent outbreak of the coronavirus pandemic.