Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Year range
1.
Acta Biomed ; 93(2): e2022057, 2022 05 11.
Article in English | MEDLINE | ID: covidwho-1848015

ABSTRACT

BACKGROUND AND AIM: Dysregulation of iron metabolism and hyper-inflammation are two key points in the pathogenesis of coronavirus disease 2019 (COVID-19). Since high hepcidin levels and low serum iron can predict COVID-19 severity and mortality, we decided to investigate iron metabolism and inflammatory response in 32 COVID-19 adult patients with a diagnosis of COVID-19 defined by a positive result of RT-PCR nasopharyngeal swab, and admitted to an Italian emergency department for acute respiratory failure at different degree. METHODS: Patients were stratified in 3 groups based on PaO2/FiO2 ratio at admission: 13 (41%) were normoxemic at rest and suffered from exertional dyspnea (group 1); 14 (44%) had a mild respiratory failure (group 2), and 5 (15%) a severe hypoxiemia (group 3). RESULTS: White blood cells were significantly higher in group 3, while lymphocytes and hemoglobin were significantly reduced. Serum iron, transferrin saturation, non-transferrin-bound iron (NTBI) and ferritin were significantly increased in group 2. All the groups showed high hepcidin levels, but in group 3 this parameter was significantly altered. It is noteworthy that in group 1 inflammatory and oxidative indices were both within the normal range. CONCLUSIONS: We are aware that our study has some limitations, the small number of enrolled patients and the short period of data collection, but few works have been performed in the Emergency Room. However, we strongly believe that our results confirm the pivotal role of both iron metabolism dysregulation and hyper-inflammatory response in the pathogenesis of tissue and organ damage in COVID-19 patients.


Subject(s)
COVID-19 , Adult , Emergency Service, Hospital , Hepcidins/metabolism , Homeostasis , Humans , Iron/metabolism , Prospective Studies , SARS-CoV-2
2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292548

ABSTRACT

Dysregulation of iron metabolism and hyper-inflammation are two key points in the pathogenesis of coronavirus disease 2019 (COVID-19). Since high hepcidin levels and low serum iron can predict COVID-19 severity and mortality, we decided to investigate iron metabolism and inflammatory response in 32 COVID-19 adult patients with a diagnosis of COVID-19 defined by a positive result of RT-PCR nasopharyngeal swab, and admitted to an Italian emergency department for acute respiratory failure at different degree. Patients were stratified in 3 groups based on PaO 2 /FiO 2 ratio at admission: 13 (41%) were normoxemic at rest and suffered from exertional dyspnea (group 1);14 (44%) had a mild respiratory failure (group 2), and 5 (15%) a severe hypoxiemia (group 3). White blood cells were significantly higher in group 3, while lymphocytes and hemoglobin were significantly reduced. Serum iron, transferrin saturation, non-transferrin-bound iron (NTBI) and ferritin were significantly increased in group 2. All the groups showed high hepcidin levels, but in group 3 this parameter was significantly altered. It is noteworthy that in group 1 inflammatory and oxidative indices were both within the normal range. We are aware that our study has some limitations, the small number of enrolled patients and the short period of data collection, but few works have been performed in the Emergency Room. However, we strongly believe that our results confirm the pivotal role of both iron metabolism dysregulation and hyper-inflammatory response in the pathogenesis of tissue and organ damage in COVID-19 patients.

3.
Antioxidants (Basel) ; 10(9)2021 Sep 14.
Article in English | MEDLINE | ID: covidwho-1408379

ABSTRACT

In patients affected by Acute Respiratory Distress Syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD) and Coronavirus Disease 2019 (COVID-19), unclear mechanisms negatively interfere with the hematopoietic response to hypoxia. Although stimulated by physiological hypoxia, pulmonary hypoxic patients usually develop anemia, which may ultimately complicate the outcome. To characterize this non-adaptive response, we dissected the interplay among the redox state, iron regulation, and inflammation in patients challenged by either acute (ARDS and COVID-19) or chronic (COPD) hypoxia. To this purpose, we evaluated a panel of redox state biomarkers that may integrate the routine iron metabolism assays to monitor the patients' inflammatory and oxidative state. We measured redox and hematopoietic regulators in 20 ARDS patients, 20 ambulatory COPD patients, 9 COVID-19 ARDS-like patients, and 10 age-matched non-hypoxic healthy volunteers (controls). All the examined pathological conditions induced hypoxia, with ARDS and COVID-19 depressing the hematopoietic response without remarkable effects on erythropoietin. Free iron was higher than the controls in all patients, with higher levels of hepcidin and soluble transferrin receptor in ARDS and COVID-19. All markers of the redox state and antioxidant barrier were overexpressed in ARDS and COVID-19. However, glutathionyl hemoglobin, a candidate marker for the redox imbalance, was especially low in ARDS, despite depressed levels of glutathione being present in all patients. Although iron regulation was dysfunctional in all groups, the depressed antioxidant barrier in ARDS, and to a lesser extent in COVID-19, might induce greater inflammatory responses with consequent anemia.

SELECTION OF CITATIONS
SEARCH DETAIL