Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Am J Hematol ; 97(11): 1404-1412, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1976682


Coronavirus Disease (COVID-19) can be considered as a human pathological model of inflammation combined with hypoxia. In this setting, both erythropoiesis and iron metabolism appear to be profoundly affected by inflammatory and hypoxic stimuli, which act in the opposite direction on hepcidin regulation. The impact of low blood oxygen levels on erythropoiesis and iron metabolism in the context of human hypoxic disease (e.g., pneumonia) has not been fully elucidated. This multicentric observational study was aimed at investigating the prevalence of anemia, the alterations of iron homeostasis, and the relationship between inflammation, hypoxia, and erythropoietic parameters in a cohort of 481 COVID-19 patients admitted both to medical wards and intensive care units (ICU). Data were collected on admission and after 7 days of hospitalization. On admission, nearly half of the patients were anemic, displaying mild-to-moderate anemia. We found that hepcidin levels were increased during the whole period of observation. The patients with a higher burden of disease (i.e., those who needed intensive care treatment or had a more severe degree of hypoxia) showed lower hepcidin levels, despite having a more marked inflammatory pattern. Erythropoietin (EPO) levels were also lower in the ICU group on admission. After 7 days, EPO levels rose in the ICU group while they remained stable in the non-ICU group, reflecting that the initial hypoxic stimulus was stronger in the first group. These findings strengthen the hypothesis that, at least in the early phases, hypoxia-driven stimuli prevail over inflammation in the regulation of hepcidin and, finally, of erythropoiesis.

Anemia , COVID-19 , Erythropoietin , Erythropoiesis/physiology , Hepcidins , Humans , Hypoxia , Inflammation , Iron
Acta Biomed ; 93(2): e2022057, 2022 05 11.
Article in English | MEDLINE | ID: covidwho-1848015


BACKGROUND AND AIM: Dysregulation of iron metabolism and hyper-inflammation are two key points in the pathogenesis of coronavirus disease 2019 (COVID-19). Since high hepcidin levels and low serum iron can predict COVID-19 severity and mortality, we decided to investigate iron metabolism and inflammatory response in 32 COVID-19 adult patients with a diagnosis of COVID-19 defined by a positive result of RT-PCR nasopharyngeal swab, and admitted to an Italian emergency department for acute respiratory failure at different degree. METHODS: Patients were stratified in 3 groups based on PaO2/FiO2 ratio at admission: 13 (41%) were normoxemic at rest and suffered from exertional dyspnea (group 1); 14 (44%) had a mild respiratory failure (group 2), and 5 (15%) a severe hypoxiemia (group 3). RESULTS: White blood cells were significantly higher in group 3, while lymphocytes and hemoglobin were significantly reduced. Serum iron, transferrin saturation, non-transferrin-bound iron (NTBI) and ferritin were significantly increased in group 2. All the groups showed high hepcidin levels, but in group 3 this parameter was significantly altered. It is noteworthy that in group 1 inflammatory and oxidative indices were both within the normal range. CONCLUSIONS: We are aware that our study has some limitations, the small number of enrolled patients and the short period of data collection, but few works have been performed in the Emergency Room. However, we strongly believe that our results confirm the pivotal role of both iron metabolism dysregulation and hyper-inflammatory response in the pathogenesis of tissue and organ damage in COVID-19 patients.

COVID-19 , Adult , Emergency Service, Hospital , Hepcidins/metabolism , Homeostasis , Humans , Iron/metabolism , Prospective Studies , SARS-CoV-2
Antioxidants (Basel) ; 10(9)2021 Sep 14.
Article in English | MEDLINE | ID: covidwho-1408379


In patients affected by Acute Respiratory Distress Syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD) and Coronavirus Disease 2019 (COVID-19), unclear mechanisms negatively interfere with the hematopoietic response to hypoxia. Although stimulated by physiological hypoxia, pulmonary hypoxic patients usually develop anemia, which may ultimately complicate the outcome. To characterize this non-adaptive response, we dissected the interplay among the redox state, iron regulation, and inflammation in patients challenged by either acute (ARDS and COVID-19) or chronic (COPD) hypoxia. To this purpose, we evaluated a panel of redox state biomarkers that may integrate the routine iron metabolism assays to monitor the patients' inflammatory and oxidative state. We measured redox and hematopoietic regulators in 20 ARDS patients, 20 ambulatory COPD patients, 9 COVID-19 ARDS-like patients, and 10 age-matched non-hypoxic healthy volunteers (controls). All the examined pathological conditions induced hypoxia, with ARDS and COVID-19 depressing the hematopoietic response without remarkable effects on erythropoietin. Free iron was higher than the controls in all patients, with higher levels of hepcidin and soluble transferrin receptor in ARDS and COVID-19. All markers of the redox state and antioxidant barrier were overexpressed in ARDS and COVID-19. However, glutathionyl hemoglobin, a candidate marker for the redox imbalance, was especially low in ARDS, despite depressed levels of glutathione being present in all patients. Although iron regulation was dysfunctional in all groups, the depressed antioxidant barrier in ARDS, and to a lesser extent in COVID-19, might induce greater inflammatory responses with consequent anemia.