Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Infect Dis ; 2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-1901149

ABSTRACT

In July 2021, Public Health - Seattle and King County-investigated a COVID-19 outbreak at an indoor event intended for fully-vaccinated individuals, revealing unvaccinated staff, limited masking, poor ventilation, and overcrowding. Supporting businesses to develop and implement comprehensive COVID-19 prevention plans is essential for reducing spread in these settings. Word Count: 48/50.

3.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327439

ABSTRACT

Background Co-circulating respiratory pathogens can interfere with or promote each other, leading to important effects on disease epidemiology. Estimating the magnitude of pathogen-pathogen interactions from clinical specimens is challenging because sampling from symptomatic individuals can create biased estimates. Methods We conducted an observational, cross-sectional study using samples collected by the Seattle Flu Study between 11 November 2018 and 20 August 2021. Samples that tested positive via RT-qPCR for at least one of 17 potential respiratory pathogens were included in this study. Semi-quantitative cycle threshold (Ct) values were used to measure pathogen load. Differences in pathogen load between monoinfected and coinfected samples were assessed using linear regression adjusting for age, season, and recruitment channel. Results 21,686 samples were positive for at least one potential pathogen. Most prevalent were rhinovirus (33·5%), Streptococcus pneumoniae ( SPn , 29·0%), SARS-CoV-2 (13.8%) and influenza A/H1N1 (9·6%). 140 potential pathogen pairs were included for analysis, and 56 (40%) pairs yielded significant Ct differences (p < 0.01) between monoinfected and co-infected samples. We observed no virus-virus pairs showing evidence of significant facilitating interactions, and found significant viral load decrease among 37 of 108 (34%) assessed pairs. Samples positive with SPn and a virus were consistently associated with increased SPn load. Conclusions Viral load data can be used to overcome sampling bias in studies of pathogen-pathogen interactions. When applied to respiratory pathogens, we found evidence of viral- SPn facilitation and several examples of viral-viral interference. Multipathogen surveillance is a cost-efficient data collection approach, with added clinical and epidemiological informational value over single-pathogen testing, but requires careful analysis to mitigate selection bias.

4.
MMWR Morb Mortal Wkly Rep ; 70(37): 1284-1290, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1417365

ABSTRACT

COVID-19 vaccine breakthrough infection surveillance helps monitor trends in disease incidence and severe outcomes in fully vaccinated persons, including the impact of the highly transmissible B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19. Reported COVID-19 cases, hospitalizations, and deaths occurring among persons aged ≥18 years during April 4-July 17, 2021, were analyzed by vaccination status across 13 U.S. jurisdictions that routinely linked case surveillance and immunization registry data. Averaged weekly, age-standardized incidence rate ratios (IRRs) for cases among persons who were not fully vaccinated compared with those among fully vaccinated persons decreased from 11.1 (95% confidence interval [CI] = 7.8-15.8) to 4.6 (95% CI = 2.5-8.5) between two periods when prevalence of the Delta variant was lower (<50% of sequenced isolates; April 4-June 19) and higher (≥50%; June 20-July 17), and IRRs for hospitalizations and deaths decreased between the same two periods, from 13.3 (95% CI = 11.3-15.6) to 10.4 (95% CI = 8.1-13.3) and from 16.6 (95% CI = 13.5-20.4) to 11.3 (95% CI = 9.1-13.9). Findings were consistent with a potential decline in vaccine protection against confirmed SARS-CoV-2 infection and continued strong protection against COVID-19-associated hospitalization and death. Getting vaccinated protects against severe illness from COVID-19, including the Delta variant, and monitoring COVID-19 incidence by vaccination status might provide early signals of changes in vaccine-related protection that can be confirmed through well-controlled vaccine effectiveness (VE) studies.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/mortality , COVID-19/therapy , Humans , Incidence , Middle Aged , United States/epidemiology , Young Adult
5.
MMWR Morb Mortal Wkly Rep ; 70(25): 916-921, 2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1282750

ABSTRACT

Workplace activities involving close contact with coworkers and customers can lead to transmission of SARS-CoV-2, the virus that causes COVID-19 (1,2). Information on the approach to and effectiveness of COVID-19 workplace investigations is limited. In May 2020, Public Health - Seattle & King County (PHSKC), King County, Washington established a COVID-19 workplace surveillance and response system to enhance COVID-19 contact tracing and identify outbreaks in workplaces. During June 15-November 15, 2020, a total of 2,881 workplaces in King County reported at least one case of COVID-19. Among 1,305 (45.3%) investigated workplaces,* 524 (40.3%) met the definition of a workplace outbreak.† Among 306 (58.4%) workplaces with complete data,§ an average of 4.4 employee COVID-19 cases¶ (median = three; range = 1-65) were identified per outbreak, with an average attack rate among employees of 17.5%. PHSKC and the Washington State Department of Health optimized resources by establishing a classification scheme to prioritize workplace investigations as high, medium, or low priority based on workplace features observed to be associated with increased COVID-19 spread and workforce features associated with severe disease outcomes. High-priority investigations were significantly more likely than medium- and low-priority investigations to have two or more cases among employees (p<0.001), two or more cases not previously linked to the workplace (p<0.001), or two or more exposed workplace contacts not previously identified during case interviews (p = 0.002). Prioritization of workplace investigations allowed for the allocation of limited resources to effectively conduct workplace investigations to limit the potential workplace spread of COVID-19. Workplace investigations can also serve as an opportunity to provide guidance on preventing workplace exposures to SARS-CoV-2, facilitate access to vaccines, and strengthen collaborations between public health and businesses.


Subject(s)
COVID-19/epidemiology , Occupational Health , Public Health Surveillance , COVID-19/transmission , Contact Tracing , Humans , Interprofessional Relations , Washington/epidemiology , Workplace
6.
J Gen Intern Med ; 35(11): 3302-3307, 2020 11.
Article in English | MEDLINE | ID: covidwho-739677

ABSTRACT

BACKGROUND: Skilled nursing facilities (SNFs) are high-risk settings for SARS-CoV-2 transmission. Infection rates among employees are infrequently described. OBJECTIVE: To describe SARS-CoV-2 rates among SNF employees and residents during a non-outbreak time period, we measured cross-sectional SARS-CoV-2 prevalence across multiple sites in the Seattle area. DESIGN: SARS-CoV-2 testing was performed for SNF employees and residents using quantitative real-time reverse transcription polymerase chain reaction. A subset of employees completed a sociodemographic and symptom questionnaire. PARTICIPANTS: Between March 29 and May 13, 2020, we tested 1583 employees and 1208 residents at 16 SNFs for SARS-CoV-2. MAIN MEASURE: SARS-CoV-2 testing results and symptom report among employees and residents. KEY RESULTS: Eleven of the 16 SNFs had one or more resident or employee test positive. Overall, 46 (2.9%) employees had positive or inconclusive testing for SARS-CoV-2, and among those who completed surveys, most were asymptomatic and involved in direct patient care. The majority of employees tested were female (934, 73%), and most employees were Asian (392, 30%), Black (360, 28%), or white (360, 28%). Among the 1208 residents tested, 110 (9.1%) had positive or inconclusive results. There was no association between the presence of positive residents and positive employees within a SNF (p = 0.62, McNemar's test). CONCLUSIONS: In the largest study of SNFs to date, SARS-CoV-2 infections were detected among both employees and residents. Employees testing positive were often asymptomatic and involved in direct patient care. Surveillance testing is needed for SNF employees and residents during the pandemic response.


Subject(s)
COVID-19 Testing/methods , COVID-19/epidemiology , Health Personnel/statistics & numerical data , Skilled Nursing Facilities/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19 Testing/statistics & numerical data , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Occupational Diseases/epidemiology , Prevalence , SARS-CoV-2 , Skilled Nursing Facilities/organization & administration , Surveys and Questionnaires , Washington/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL