Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Relph, Katharine A.; Russell, Clark D.; Fairfield, Cameron J.; Turtle, Lance, de Silva, Thushan I.; Siggins, Matthew K.; Drake, Thomas M.; Thwaites, Ryan S.; Abrams, Simon, Moore, Shona C.; Hardwick, Hayley E.; Oosthuyzen, Wilna, Harrison, Ewen M.; Docherty, Annemarie B.; Openshaw, Peter J. M.; Baillie, J. Kenneth, Semple, Malcolm G.; Ho, Antonia, Baillie, J. Kenneth, Semple, Malcolm G.; Openshaw, Peter J. M.; Carson, Gail, Alex, Beatrice, Bach, Benjamin, Barclay, Wendy S.; Bogaert, Debby, Chand, Meera, Cooke, Graham S.; Docherty, Annemarie B.; Dunning, Jake, Filipe, Ana da Silva, Fletcher, Tom, Green, Christopher A.; Harrison, Ewen M.; Hiscox, Julian A.; Ho, Antonia Ying Wai, Horby, Peter W.; Ijaz, Samreen, Khoo, Saye, Klenerman, Paul, Law, Andrew, Lim, Wei Shen, Mentzer, Alexander J.; Merson, Laura, Meynert, Alison M.; Noursadeghi, Mahdad, Moore, Shona C.; Palmarini, Massimo, Paxton, William A.; Pollakis, Georgios, Price, Nicholas, Rambaut, Andrew, Robertson, David L.; Russell, Clark D.; Sancho-Shimizu, Vanessa, Scott, Janet T.; de Silva, Thushan, Sigfrid, Louise, Solomon, Tom, Sriskandan, Shiranee, Stuart, David, Summers, Charlotte, Tedder, Richard S.; Thomson, Emma C.; Roger Thompson, A. A.; Thwaites, Ryan S.; Turtle, Lance C. W.; Gupta, Rishi K.; Zambon, Maria, Hardwick, Hayley, Donohue, Chloe, Lyons, Ruth, Griffiths, Fiona, Oosthuyzen, Wilna, Norman, Lisa, Pius, Riinu, Drake, Thomas M.; Fairfield, Cameron J.; Knight, Stephen R.; McLean, Kenneth A.; Murphy, Derek, Shaw, Catherine A.; Dalton, Jo, Girvan, Michelle, Saviciute, Egle, Roberts, Stephanie, Harrison, Janet, Marsh, Laura, Connor, Marie, Halpin, Sophie, Jackson, Clare, Gamble, Carrol, Leeming, Gary, Law, Andrew, Wham, Murray, Clohisey, Sara, Hendry, Ross, Scott-Brown, James, Greenhalf, William, Shaw, Victoria, McDonald, Sara, Keating, Seán, Ahmed, Katie A.; Armstrong, Jane A.; Ashworth, Milton, Asiimwe, Innocent G.; Bakshi, Siddharth, Barlow, Samantha L.; Booth, Laura, Brennan, Benjamin, Bullock, Katie, Catterall, Benjamin W. A.; Clark, Jordan J.; Clarke, Emily A.; Cole, Sarah, Cooper, Louise, Cox, Helen, Davis, Christopher, Dincarslan, Oslem, Dunn, Chris, Dyer, Philip, Elliott, Angela, Evans, Anthony, Finch, Lorna, Fisher, Lewis W. S.; Foster, Terry, Garcia-Dorival, Isabel, Greenhalf, William, Gunning, Philip, Hartley, Catherine, Jensen, Rebecca L.; Jones, Christopher B.; Jones, Trevor R.; Khandaker, Shadia, King, Katharine, Kiy, Robyn T.; Koukorava, Chrysa, Lake, Annette, Lant, Suzannah, Latawiec, Diane, Lavelle-Langham, Lara, Lefteri, Daniella, Lett, Lauren, Livoti, Lucia A.; Mancini, Maria, McDonald, Sarah, McEvoy, Laurence, McLauchlan, John, Metelmann, Soeren, Miah, Nahida S.; Middleton, Joanna, Mitchell, Joyce, Moore, Shona C.; Murphy, Ellen G.; Penrice-Randal, Rebekah, Pilgrim, Jack, Prince, Tessa, Reynolds, Will, Matthew Ridley, P.; Sales, Debby, Shaw, Victoria E.; Shears, Rebecca K.; Small, Benjamin, Subramaniam, Krishanthi S.; Szemiel, Agnieska, Taggart, Aislynn, Tanianis-Hughes, Jolanta, Thomas, Jordan, Trochu, Erwan, van Tonder, Libby, Wilcock, Eve, Eunice Zhang, J.; Flaherty, Lisa, Maziere, Nicole, Cass, Emily, Doce Carracedo, Alejandra, Carlucci, Nicola, Holmes, Anthony, Massey, Hannah, Murphy, Lee, Wrobel, Nicola, McCafferty, Sarah, Morrice, Kirstie, MacLean, Alan, Adeniji, Kayode, Agranoff, Daniel, Agwuh, Ken, Ail, Dhiraj, Aldera, Erin L.; Alegria, Ana, Angus, Brian, Ashish, Abdul, Atkinson, Dougal, Bari, Shahedal, Barlow, Gavin, Barnass, Stella, Barrett, Nicholas, Bassford, Christopher, Basude, Sneha, Baxter, David, Beadsworth, Michael, Bernatoniene, Jolanta, Berridge, John, Best, Nicola, Bothma, Pieter, Chadwick, David, Brittain-Long, Robin, Bulteel, Naomi, Burden, Tom, Burtenshaw, Andrew, Caruth, Vikki, Chadwick, David, Chambler, Duncan, Chee, Nigel, Child, Jenny, Chukkambotla, Srikanth, Clark, Tom, Collini, Paul, Cosgrove, Catherine, Cupitt, Jason, Cutino-Moguel, Maria-Teresa, Dark, Paul, Dawson, Chris, Dervisevic, Samir, Donnison, Phil, Douthwaite, Sam, DuRand, Ingrid, Dushianthan, Ahilanadan, Dyer, Tristan, Evans, Cariad, Eziefula, Chi, Fegan, Christopher, Finn, Adam, Fullerton, Duncan, Garg, Sanjeev, Garg, Sanjeev, Garg, Atul, Gkrania-Klotsas, Effrossyni, Godden, Jo, Goldsmith, Arthur, Graham, Clive, Hardy, Elaine, Hartshorn, Stuart, Harvey, Daniel, Havalda, Peter, Hawcutt, Daniel B.; Hobrok, Maria, Hodgson, Luke, Hormis, Anil, Jacobs, Michael, Jain, Susan, Jennings, Paul, Kaliappan, Agilan, Kasipandian, Vidya, Kegg, Stephen, Kelsey, Michael, Kendall, Jason, Kerrison, Caroline, Kerslake, Ian, Koch, Oliver, Koduri, Gouri, Koshy, George, Laha, Shondipon, Laird, Steven, Larkin, Susan, Leiner, Tamas, Lillie, Patrick, Limb, James, Linnett, Vanessa, Little, Jeff, Lyttle, Mark, MacMahon, Michael, MacNaughton, Emily, Mankregod, Ravish, Masson, Huw, Matovu, Elijah, McCullough, Katherine, McEwen, Ruth, Meda, Manjula, Mills, Gary, Minton, Jane, Mirfenderesky, Mariyam, Mohandas, Kavya, Mok, Quen, Moon, James, Moore, Elinoor, Morgan, Patrick, Morris, Craig, Mortimore, Katherine, Moses, Samuel, Mpenge, Mbiye, Mulla, Rohinton, Murphy, Michael, Nagel, Megan, Nagarajan, Thapas, Nelson, Mark, O’Shea, Matthew K.; Otahal, Igor, Ostermann, Marlies, Pais, Mark, Panchatsharam, Selva, Papakonstantinou, Danai, Paraiso, Hassan, Patel, Brij, Pattison, Natalie, Pepperell, Justin, Peters, Mark, Phull, Mandeep, Pintus, Stefania, Pooni, Jagtur Singh, Post, Frank, Price, David, Prout, Rachel, Rae, Nikolas, Reschreiter, Henrik, Reynolds, Tim, Richardson, Neil, Roberts, Mark, Roberts, Devender, Rose, Alistair, Rousseau, Guy, Ryan, Brendan, Saluja, Taranprit, Shah, Aarti, Shanmuga, Prad, Sharma, Anil, Shawcross, Anna, Sizer, Jeremy, Shankar-Hari, Manu, Smith, Richard, Snelson, Catherine, Spittle, Nick, Staines, Nikki, Stambach, Tom, Stewart, Richard, Subudhi, Pradeep, Szakmany, Tamas, Tatham, Kate, Thomas, Jo, Thompson, Chris, Thompson, Robert, Tridente, Ascanio, Tupper-Carey, Darell, Twagira, Mary, Ustianowski, Andrew, Vallotton, Nick, Vincent-Smith, Lisa, Visuvanathan, Shico, Vuylsteke, Alan, Waddy, Sam, Wake, Rachel, Walden, Andrew, Welters, Ingeborg, Whitehouse, Tony, Whittaker, Paul, Whittington, Ashley, Papineni, Padmasayee, Wijesinghe, Meme, Williams, Martin, Wilson, Lawrence, Cole, Sarah, Winchester, Stephen, Wiselka, Martin, Wolverson, Adam, Wootton, Daniel G.; Workman, Andrew, Yates, Bryan, Young, Peter.
Open Forum Infectious Diseases ; 9(5), 2022.
Article in English | PMC | ID: covidwho-1821760

ABSTRACT

Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11–1.70] ng/mL vs 0.24 [0.10–0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51–.60]).

2.
The Lancet. Digital health ; 4(4):e220-e234, 2022.
Article in English | EuropePMC | ID: covidwho-1755949

ABSTRACT

Background Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. Methods We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. Findings Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years;0·52 [0·46–0·58], p<0·0001, for >80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. Interpretation Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. Funding UK National Institute for Health Research and UK Medical Research Council.

3.
BMJ ; 376: e066871, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1707375

ABSTRACT

OBJECTIVES: To investigate the proportion of lateral flow tests (LFTs) that produce negative results in those with a high risk of infectiousness from SARS-CoV-2, to investigate the impact of the stage and severity of disease, and to compare predictions made by influential mathematical models with findings of empirical studies. DESIGN: Linked data analysis combining empirical evidence of the accuracy of the Innova LFT, the probability of positive viral culture or transmission to secondary cases, and the distribution of viral loads of SARS-CoV-2 in individuals in different settings. SETTING: Testing of individuals with symptoms attending NHS Test-and-Trace centres across the UK, residents without symptoms attending municipal mass testing centres in Liverpool, and students without symptoms screened at the University of Birmingham. PARTICIPANTS: Evidence for the sensitivity of the Innova LFT, based on 70 individuals with SARS-CoV-2 and LFT results. Infectiousness was based on viral culture rates on 246 samples (176 people with SARS-CoV-2) and secondary cases among 2 474 066 contacts; distributions of cycle threshold (Ct) values from 231 497 index individuals attending NHS Test-and-Trace centres; 70 people with SARS-CoV-2 detected in Liverpool and 62 people with SARS-CoV-2 in Birmingham (54 imputed). MAIN OUTCOME MEASURES: The predicted proportions who were missed by LFT and viral culture positive and missed by LFT and sources of secondary cases, in each of the three settings. Predictions were compared with those made by mathematical models. RESULTS: The analysis predicted that of those with a viral culture positive result, Innova would miss 20% attending an NHS Test-and-Trace centre, 29% without symptoms attending municipal mass testing, and 81% attending university screen testing without symptoms, along with 38%, 47%, and 90% of sources of secondary cases. In comparison, two mathematical models underestimated the numbers of missed infectious individuals (8%, 10%, and 32% in the three settings for one model, whereas the assumptions from the second model made it impossible to miss an infectious individual). Owing to the paucity of usable data, the inputs to the analyses are from limited sources. CONCLUSIONS: The proportion of infectious people with SARS-CoV-2 missed by LFTs is substantial enough to be of clinical importance. The proportion missed varied between settings because of different viral load distributions and is likely to be highest in those without symptoms. Key models have substantially overestimated the sensitivity of LFTs compared with empirical data. An urgent need exists for additional robust well designed and reported empirical studies from intended use settings to inform evidence based policy.


Subject(s)
COVID-19 Serological Testing/standards , COVID-19/epidemiology , Antibodies, Viral/blood , COVID-19/diagnosis , False Negative Reactions , False Positive Reactions , Humans , Pandemics , Reverse Transcriptase Polymerase Chain Reaction/standards , SARS-CoV-2 , Sensitivity and Specificity , Viral Load
4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-321615

ABSTRACT

Background: The SARS-CoV-2 Delta variant is highly transmissible and spreading globally but a detailed understanding of community transmission risks in highly vaccinated populations is lacking.Methods: Between September 2020 and August 2021, we recruited 510 community contacts of 422 UK COVID-19 cases to a cohort study. A total of 7194 upper respiratory tract (URT) samples were tested from sequential daily sampling of participants for up to 20 days. We analysed transmission risk by vaccination status for 139 contacts exposed to the Delta variant. We compared viral load (VL) trajectories from fully-vaccinated cases of Delta infection (n=19) with unvaccinated Delta (n=10), Alpha (n=39) and pre-Alpha (n=49) infections.Findings: The household secondary attack rate for fully-vaccinated contacts exposed to Delta was 19.7% (95%CI:11.6-31.3%), compared with 35.7% (95%CI:16.4-61.2%) in the unvaccinated. One third of infections in Delta-exposed contacts arose from fully-vaccinated index cases and one half of infected contacts were also fully-vaccinated. Seven transmission events between fully vaccinated index-contact pairs occurred. Genomic analysis confirmed transmission pathways between fully-vaccinated individuals within three households. Peak VL was similar in vaccinated and unvaccinated individuals with Delta variant infection but vaccinated Delta cases saw significantly faster VL decline than unvaccinated Alpha or Delta cases. Within infected individuals, faster VL growth was correlated with higher peak VL and slower decline.Interpretation: Although vaccination reduces the risk of Delta infection and causes some changes to viral kinetics, fully-vaccinated individuals with breakthrough infections have peak URT VL similar to unvaccinated cases and can efficiently transmit infection in household settings, including to fully vaccinated contacts.Funding: National Institute for Health Research (Award:NIHR200927)Declaration of Interest: The authors declare no relevant conflicts.Ethical Approval: The study was approved by the Health Research Authority (Research Ethics Committee reference: 20/NW/0231).

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-320392

ABSTRACT

Background: Microbiological characterisation of co-infections and secondary infections in COVID-19 is lacking, while antimicrobial usage is high. We aimed to describe microbiologically-confirmed co-/secondary infections, and antimicrobial usage, in hospitalised patients with COVID-19.Methods: Hospitalised patients in England, Scotland, and Wales with confirmed/high likelihood SARS-CoV-2 infection were recruited to the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) prospective cohort study. Patients admitted between 6th February–8th June 2020 with a recorded outcome 28 days after admission were included. Organisms considered clinically insignificant were excluded.Findings: Microbiological investigations were recorded for 8649/48 902 patients, with significant respiratory or bloodstream bacterial/fungal infections recorded for 1107 patients. These were mostly secondary infections diagnosed >2 days after admission (70·6%, 762/1080 with known sample timing). Staphylococcus aureus then Haemophilus influenzae were the most common pathogens causing respiratory co-infections (diagnosed ≤2 days after admission), with Enterobacteriaceae and S. aureus most common in secondary respiratory infections. Bloodstream infections were most frequently caused by Escherichia coli then S. aureus. Among patients with available data, 37·0% (13 390/36 145) received antimicrobials prior to admission and 85·2% (39 258/46 061) in hospital, highest in critical care. We identified frequent use of broad-spectrum agents and use of carbapenems over carbapenem-sparing alternatives.Interpretation: In hospitalised patients with COVID-19, microbiologically-confirmed bacterial/fungal infections are rare, and more likely to be secondary infections. Gram-negative organisms and S. aureus are the predominant pathogens. The frequency and nature of antimicrobial usage is concerning, but tractable targets for stewardship interventions exist.Funding: This work is supported by grants from: the National Institute for Health Research (NIHR) [award CO-CIN-01], the Medical Research Council [grant MC_PC_19059] and by the NIHR Health Protection Research Unit (HPRU)in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford [award 200907], NIHR HPRU in Respiratory Infections at Imperial College London with PHE [award 200927], Wellcome Trust and Department for International Development [215091/Z/18/Z], and the Bill and Melinda Gates Foundation[OPP1209135], and Liverpool Experimental Cancer Medicine Centre (Grant Reference: C18616/A25153), NIHR Biomedical Research Centre at Imperial College London [IS-BRC-1215-20013], EU Platform foR European Preparedness Against (Re-) emerging Epidemics (PREPARE) [FP7 project 602525] and NIHR Clinical Research Network for providing infrastructure support for this research. LT is supported by a Wellcome Trust fellowship [205228/Z/16/Z]. PJMO is supported by a NIHR Senior Investigator Award [award 201385]. This research was funded in whole, or in part, by the Wellcome Trust. For the purpose of Open Access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. The views expressed are those of the authors and not necessarily those of the DHSC, DID, NIHR, MRC, Wellcome Trust or PHE.Conflict of Interest: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: support from the National Institute for Health Research (NIHR), the Medical Research Council (MRC), the NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, NIHR HPRU in Respiratory Infections at Imperial College London, NIHR Biomedical Research Centre at ImperialCollege Lo don, and NIHR Clinical Research Network for the submitted work;ABD reports grants fromDepartment of Health and Social Care (DHSC), during the conduct of the study, grants from Wellcome Trust, outside the submitted work;PJMO reports personal fees from consultancies and from European RespiratorySociety, grants from MRC, MRC Global Challenge Research Fund, EU, NIHR BRC, MRC/GSK, WellcomeTrust, NIHR (Health Protection Research Unit (HPRU) in Respiratory Infection), and is NIHR senior investigator outside the submitted work;his role as President of the British Society for Immunology was unpaid but travel and accommodation at some meetings was provided by the Society;JKB reports grants from MRC UK;MGS reportsgrants from DHSC NIHR UK, grants from MRC UK, grants from HPRU in Emerging and Zoonotic Infections,University of Liverpool, during the conduct of the study, other from Integrum Scientific LLC, Greensboro, NC, USA, outside the submitted work.Ethical Approval: Ethical approval was given by the South Central-Oxford C Research Ethics Committee in England (13/SC/0149), the Scotland A Research Ethics Committee (20/SS/0028), and the WHO Ethics Review Committee (RPC571 and RPC572, April 2013).

6.
Nephrol Dial Transplant ; 37(2): 271-284, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1648225

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is common in coronavirus disease 2019 (COVID-19). This study investigated adults hospitalized with COVID-19 and hypothesized that risk factors for AKI would include comorbidities and non-White race. METHODS: A prospective multicentre cohort study was performed using patients admitted to 254 UK hospitals with COVID-19 between 17 January 2020 and 5 December 2020. RESULTS: Of 85 687 patients, 2198 (2.6%) received acute kidney replacement therapy (KRT). Of 41 294 patients with biochemistry data, 13 000 (31.5%) had biochemical AKI: 8562 stage 1 (65.9%), 2609 stage 2 (20.1%) and 1829 stage 3 (14.1%). The main risk factors for KRT were chronic kidney disease (CKD) [adjusted odds ratio (aOR) 3.41: 95% confidence interval 3.06-3.81], male sex (aOR 2.43: 2.18-2.71) and Black race (aOR 2.17: 1.79-2.63). The main risk factors for biochemical AKI were admission respiratory rate >30 breaths per minute (aOR 1.68: 1.56-1.81), CKD (aOR 1.66: 1.57-1.76) and Black race (aOR 1.44: 1.28-1.61). There was a gradated rise in the risk of 28-day mortality by increasing severity of AKI: stage 1 aOR 1.58 (1.49-1.67), stage 2 aOR 2.41 (2.20-2.64), stage 3 aOR 3.50 (3.14-3.91) and KRT aOR 3.06 (2.75-3.39). AKI rates peaked in April 2020 and the subsequent fall in rates could not be explained by the use of dexamethasone or remdesivir. CONCLUSIONS: AKI is common in adults hospitalized with COVID-19 and it is associated with a heightened risk of mortality. Although the rates of AKI have fallen from the early months of the pandemic, high-risk patients should have their kidney function and fluid status monitored closely.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Cohort Studies , Hospital Mortality , Humans , Male , Prospective Studies , Retrospective Studies , Risk Factors , SARS-CoV-2 , United Kingdom , World Health Organization
7.
Nat Commun ; 13(1): 80, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1616982

ABSTRACT

Cross-reactive immune responses to SARS-CoV-2 have been observed in pre-pandemic cohorts and proposed to contribute to host protection. Here we assess 52 COVID-19 household contacts to capture immune responses at the earliest timepoints after SARS-CoV-2 exposure. Using a dual cytokine FLISpot assay on peripheral blood mononuclear cells, we enumerate the frequency of T cells specific for spike, nucleocapsid, membrane, envelope and ORF1 SARS-CoV-2 epitopes that cross-react with human endemic coronaviruses. We observe higher frequencies of cross-reactive (p = 0.0139), and nucleocapsid-specific (p = 0.0355) IL-2-secreting memory T cells in contacts who remained PCR-negative despite exposure (n = 26), when compared with those who convert to PCR-positive (n = 26); no significant difference in the frequency of responses to spike is observed, hinting at a limited protective function of spike-cross-reactive T cells. Our results are thus consistent with pre-existing non-spike cross-reactive memory T cells protecting SARS-CoV-2-naïve contacts from infection, thereby supporting the inclusion of non-spike antigens in second-generation vaccines.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Contact Tracing/methods , Cross Reactions/immunology , SARS-CoV-2/immunology , Adult , COVID-19/epidemiology , COVID-19/virology , Coronavirus/immunology , Coronavirus/physiology , Epitopes, T-Lymphocyte/immunology , Female , Humans , Male , /virology , Middle Aged , Pandemics/prevention & control , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/metabolism , Young Adult
8.
Lancet Infect Dis ; 22(2): 183-195, 2022 02.
Article in English | MEDLINE | ID: covidwho-1598157

ABSTRACT

BACKGROUND: The SARS-CoV-2 delta (B.1.617.2) variant is highly transmissible and spreading globally, including in populations with high vaccination rates. We aimed to investigate transmission and viral load kinetics in vaccinated and unvaccinated individuals with mild delta variant infection in the community. METHODS: Between Sept 13, 2020, and Sept 15, 2021, 602 community contacts (identified via the UK contract-tracing system) of 471 UK COVID-19 index cases were recruited to the Assessment of Transmission and Contagiousness of COVID-19 in Contacts cohort study and contributed 8145 upper respiratory tract samples from daily sampling for up to 20 days. Household and non-household exposed contacts aged 5 years or older were eligible for recruitment if they could provide informed consent and agree to self-swabbing of the upper respiratory tract. We analysed transmission risk by vaccination status for 231 contacts exposed to 162 epidemiologically linked delta variant-infected index cases. We compared viral load trajectories from fully vaccinated individuals with delta infection (n=29) with unvaccinated individuals with delta (n=16), alpha (B.1.1.7; n=39), and pre-alpha (n=49) infections. Primary outcomes for the epidemiological analysis were to assess the secondary attack rate (SAR) in household contacts stratified by contact vaccination status and the index cases' vaccination status. Primary outcomes for the viral load kinetics analysis were to detect differences in the peak viral load, viral growth rate, and viral decline rate between participants according to SARS-CoV-2 variant and vaccination status. FINDINGS: The SAR in household contacts exposed to the delta variant was 25% (95% CI 18-33) for fully vaccinated individuals compared with 38% (24-53) in unvaccinated individuals. The median time between second vaccine dose and study recruitment in fully vaccinated contacts was longer for infected individuals (median 101 days [IQR 74-120]) than for uninfected individuals (64 days [32-97], p=0·001). SAR among household contacts exposed to fully vaccinated index cases was similar to household contacts exposed to unvaccinated index cases (25% [95% CI 15-35] for vaccinated vs 23% [15-31] for unvaccinated). 12 (39%) of 31 infections in fully vaccinated household contacts arose from fully vaccinated epidemiologically linked index cases, further confirmed by genomic and virological analysis in three index case-contact pairs. Although peak viral load did not differ by vaccination status or variant type, it increased modestly with age (difference of 0·39 [95% credible interval -0·03 to 0·79] in peak log10 viral load per mL between those aged 10 years and 50 years). Fully vaccinated individuals with delta variant infection had a faster (posterior probability >0·84) mean rate of viral load decline (0·95 log10 copies per mL per day) than did unvaccinated individuals with pre-alpha (0·69), alpha (0·82), or delta (0·79) variant infections. Within individuals, faster viral load growth was correlated with higher peak viral load (correlation 0·42 [95% credible interval 0·13 to 0·65]) and slower decline (-0·44 [-0·67 to -0·18]). INTERPRETATION: Vaccination reduces the risk of delta variant infection and accelerates viral clearance. Nonetheless, fully vaccinated individuals with breakthrough infections have peak viral load similar to unvaccinated cases and can efficiently transmit infection in household settings, including to fully vaccinated contacts. Host-virus interactions early in infection may shape the entire viral trajectory. FUNDING: National Institute for Health Research.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/physiology , Viral Load/physiology , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , England/epidemiology , Female , Humans , Kinetics , Longitudinal Studies , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology , Vaccination , Vaccination Coverage
9.
Antiviral Res ; 197: 105227, 2022 01.
Article in English | MEDLINE | ID: covidwho-1588315

ABSTRACT

The International Society for Influenza and other Respiratory Virus Diseases (isirv) and the WHO held a joint virtual conference from 19th-21st October 2021. While there was a major focus on the global response to the SARS-CoV-2 pandemic, including antivirals, vaccines and surveillance strategies, papers were also presented on treatment and prevention of influenza and respiratory syncytial virus (RSV). Potential therapeutics for SARS-CoV-2 included host-targeted therapies baricitinib, a JAK inhibitor, tocilizumab, an IL-6R inhibitor, verdinexor and direct acting antivirals ensovibep, S-217622, AT-527, and monoclonal antibodies casirivimab and imdevimab, directed against the spike protein. Data from trials of nirsevimab, a monoclonal antibody with a prolonged half-life which binds to the RSV F-protein, and an Ad26.RSV pre-F vaccine were also presented. The expanded role of the WHO Global Influenza Surveillance and Response System to address the SARS-CoV-2 pandemic was also discussed. This report summarizes the oral presentations given at this meeting for the benefit of the broader medical and scientific community involved in surveillance, treatment and prevention of respiratory virus diseases.


Subject(s)
COVID-19/therapy , Influenza, Human/therapy , Respiratory Syncytial Virus Infections/therapy , COVID-19/prevention & control , Global Health , Humans , Influenza, Human/prevention & control , Respiratory Syncytial Virus Infections/prevention & control , World Health Organization
11.
Eur Respir J ; 2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1538052

ABSTRACT

INTRODUCTION: The success of case isolation and contact tracing for the control of SARS-CoV-2 transmission depends on the accuracy and speed of case identification. We assessed whether inclusion of additional symptoms alongside three canonical symptoms (CS) - fever; cough; loss or change in smell or taste - could improve case definitions and accelerate case identification in SARS-CoV-2 contacts. METHODS: Two prospective longitudinal London-based cohorts of community SARS-CoV-2 contacts, recruited within 5 days of exposure, provided independent training and test datasets. Infected and uninfected contacts completed daily symptom diaries from the earliest possible time-points. Diagnostic information gained by adding symptoms to the CS was quantified using likelihood ratios and AUC-ROC. Improvements in sensitivity and time-to-detection were compared to penalties in terms of specificity and number-needed-to-test. RESULTS: Of 529 contacts within two cohorts, 164 (31%) developed PCR-confirmed infection and 365 (69%) remained uninfected. In the training dataset (n=168), 29% of infected contacts did not report the CS. Four symptoms (sore throat, muscle aches, headache and appetite loss) were identified as early-predictors (EP) which added diagnostic value to the CS. The broadened symptom criterion "≥1 of the CS, or ≥2 of the EP" identified PCR-positive contacts in the test dataset on average 2 days earlier after exposure (p=0.07) than "≥1 of the CS", with only modest reduction in specificity (5.7%). CONCLUSIONS: Broadening symptom criteria to include individuals with at least 2 of muscle aches, headache, appetite loss and sore throat identifies more infections and reduces time-to-detection, providing greater opportunities to prevent SARS-CoV-2 transmission.

12.
Elife ; 102021 11 23.
Article in English | MEDLINE | ID: covidwho-1529015

ABSTRACT

Background: There is potentially considerable variation in the nature and duration of the care provided to hospitalised patients during an infectious disease epidemic or pandemic. Improvements in care and clinician confidence may shorten the time spent as an inpatient, or the need for admission to an intensive care unit (ICU) or high dependency unit (HDU). On the other hand, limited resources at times of high demand may lead to rationing. Nevertheless, these variables may be used as static proxies for disease severity, as outcome measures for trials, and to inform planning and logistics. Methods: We investigate these time trends in an extremely large international cohort of 142,540 patients hospitalised with COVID-19. Investigated are: time from symptom onset to hospital admission, probability of ICU/HDU admission, time from hospital admission to ICU/HDU admission, hospital case fatality ratio (hCFR) and total length of hospital stay. Results: Time from onset to admission showed a rapid decline during the first months of the pandemic followed by peaks during August/September and December 2020. ICU/HDU admission was more frequent from June to August. The hCFR was lowest from June to August. Raw numbers for overall hospital stay showed little variation, but there is clear decline in time to discharge for ICU/HDU survivors. Conclusions: Our results establish that variables of these kinds have limitations when used as outcome measures in a rapidly evolving situation. Funding: This work was supported by the UK Foreign, Commonwealth and Development Office and Wellcome [215091/Z/18/Z] and the Bill & Melinda Gates Foundation [OPP1209135]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Subject(s)
Hospitalization/statistics & numerical data , Outcome Assessment, Health Care/statistics & numerical data , SARS-CoV-2/pathogenicity , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/therapy , Child , Child, Preschool , Female , Humans , Infant , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Male , Middle Aged , Retrospective Studies , Young Adult
13.
Thorax ; 2021 Nov 22.
Article in English | MEDLINE | ID: covidwho-1528562

ABSTRACT

PURPOSE: To prospectively validate two risk scores to predict mortality (4C Mortality) and in-hospital deterioration (4C Deterioration) among adults hospitalised with COVID-19. METHODS: Prospective observational cohort study of adults (age ≥18 years) with confirmed or highly suspected COVID-19 recruited into the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study in 306 hospitals across England, Scotland and Wales. Patients were recruited between 27 August 2020 and 17 February 2021, with at least 4 weeks follow-up before final data extraction. The main outcome measures were discrimination and calibration of models for in-hospital deterioration (defined as any requirement of ventilatory support or critical care, or death) and mortality, incorporating predefined subgroups. RESULTS: 76 588 participants were included, of whom 27 352 (37.4%) deteriorated and 12 581 (17.4%) died. Both the 4C Mortality (0.78 (0.77 to 0.78)) and 4C Deterioration scores (pooled C-statistic 0.76 (95% CI 0.75 to 0.77)) demonstrated consistent discrimination across all nine National Health Service regions, with similar performance metrics to the original validation cohorts. Calibration remained stable (4C Mortality: pooled slope 1.09, pooled calibration-in-the-large 0.12; 4C Deterioration: 1.00, -0.04), with no need for temporal recalibration during the second UK pandemic wave of hospital admissions. CONCLUSION: Both 4C risk stratification models demonstrate consistent performance to predict clinical deterioration and mortality in a large prospective second wave validation cohort of UK patients. Despite recent advances in the treatment and management of adults hospitalised with COVID-19, both scores can continue to inform clinical decision making. TRIAL REGISTRATION NUMBER: ISRCTN66726260.

14.
Thorax ; 77(3): 259-267, 2022 03.
Article in English | MEDLINE | ID: covidwho-1505012

ABSTRACT

BACKGROUND: Continuous positive airways pressure (CPAP) and high-flow nasal oxygen (HFNO) are considered 'aerosol-generating procedures' in the treatment of COVID-19. OBJECTIVE: To measure air and surface environmental contamination with SARS-CoV-2 virus when CPAP and HFNO are used, compared with supplemental oxygen, to investigate the potential risks of viral transmission to healthcare workers and patients. METHODS: 30 hospitalised patients with COVID-19 requiring supplemental oxygen, with a fraction of inspired oxygen ≥0.4 to maintain oxygen saturation ≥94%, were prospectively enrolled into an observational environmental sampling study. Participants received either supplemental oxygen, CPAP or HFNO (n=10 in each group). A nasopharyngeal swab, three air and three surface samples were collected from each participant and the clinical environment. Real-time quantitative polymerase chain reaction analyses were performed for viral and human RNA, and positive/suspected-positive samples were cultured for the presence of biologically viable virus. RESULTS: Overall 21/30 (70%) participants tested positive for SARS-CoV-2 RNA in the nasopharynx. In contrast, only 4/90 (4%) and 6/90 (7%) of all air and surface samples tested positive (positive for E and ORF1a) for viral RNA respectively, although there were an additional 10 suspected-positive samples in both air and surfaces samples (positive for E or ORF1a). CPAP/HFNO use or coughing was not associated with significantly more environmental contamination than supplemental oxygen use. Only one nasopharyngeal sample was culture positive. CONCLUSIONS: The use of CPAP and HFNO to treat moderate/severe COVID-19 did not appear to be associated with substantially higher levels of air or surface viral contamination in the immediate care environment, compared with the use of supplemental oxygen.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Continuous Positive Airway Pressure/methods , Humans , RNA, Viral
15.
BMJ Open ; 11(10): e055435, 2021 10 22.
Article in English | MEDLINE | ID: covidwho-1480255

ABSTRACT

OBJECTIVES: The steroid hormone vitamin D has roles in immunomodulation and bone health. Insufficiency is associated with susceptibility to respiratory infections. We report 25-hydroxy vitamin D (25(OH)D) measurements in hospitalised people with COVID-19 and influenza A and in survivors of critical illness to test the hypotheses that vitamin D insufficiency scales with illness severity and persists in survivors. DESIGN: Cross-sectional study. SETTING AND PARTICIPANTS: Plasma was obtained from 295 hospitalised people with COVID-19 (International Severe Acute Respiratory and emerging Infections Consortium (ISARIC)/WHO Clinical Characterization Protocol for Severe Emerging Infections UK study), 93 with influenza A (Mechanisms of Severe Acute Influenza Consortium (MOSAIC) study, during the 2009-2010 H1N1 pandemic) and 139 survivors of non-selected critical illness (prior to the COVID-19 pandemic). Total 25(OH)D was measured by liquid chromatography-tandem mass spectrometry. Free 25(OH)D was measured by ELISA in COVID-19 samples. OUTCOME MEASURES: Receipt of invasive mechanical ventilation (IMV) and in-hospital mortality. RESULTS: Vitamin D insufficiency (total 25(OH)D 25-50 nmol/L) and deficiency (<25 nmol/L) were prevalent in COVID-19 (29.3% and 44.4%, respectively), influenza A (47.3% and 37.6%) and critical illness survivors (30.2% and 56.8%). In COVID-19 and influenza A, total 25(OH)D measured early in illness was lower in patients who received IMV (19.6 vs 31.9 nmol/L (p<0.0001) and 22.9 vs 31.1 nmol/L (p=0.0009), respectively). In COVID-19, biologically active free 25(OH)D correlated with total 25(OH)D and was lower in patients who received IMV, but was not associated with selected circulating inflammatory mediators. CONCLUSIONS: Vitamin D deficiency/insufficiency was present in majority of hospitalised patients with COVID-19 or influenza A and correlated with severity and persisted in critical illness survivors at concentrations expected to disrupt bone metabolism. These findings support early supplementation trials to determine if insufficiency is causal in progression to severe disease, and investigation of longer-term bone health outcomes.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Vitamin D Deficiency , Critical Illness , Cross-Sectional Studies , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Pandemics , SARS-CoV-2 , Survivors , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/epidemiology
16.
Nephrol Dial Transplant ; 37(2): 271-284, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1475823

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is common in coronavirus disease 2019 (COVID-19). This study investigated adults hospitalized with COVID-19 and hypothesized that risk factors for AKI would include comorbidities and non-White race. METHODS: A prospective multicentre cohort study was performed using patients admitted to 254 UK hospitals with COVID-19 between 17 January 2020 and 5 December 2020. RESULTS: Of 85 687 patients, 2198 (2.6%) received acute kidney replacement therapy (KRT). Of 41 294 patients with biochemistry data, 13 000 (31.5%) had biochemical AKI: 8562 stage 1 (65.9%), 2609 stage 2 (20.1%) and 1829 stage 3 (14.1%). The main risk factors for KRT were chronic kidney disease (CKD) [adjusted odds ratio (aOR) 3.41: 95% confidence interval 3.06-3.81], male sex (aOR 2.43: 2.18-2.71) and Black race (aOR 2.17: 1.79-2.63). The main risk factors for biochemical AKI were admission respiratory rate >30 breaths per minute (aOR 1.68: 1.56-1.81), CKD (aOR 1.66: 1.57-1.76) and Black race (aOR 1.44: 1.28-1.61). There was a gradated rise in the risk of 28-day mortality by increasing severity of AKI: stage 1 aOR 1.58 (1.49-1.67), stage 2 aOR 2.41 (2.20-2.64), stage 3 aOR 3.50 (3.14-3.91) and KRT aOR 3.06 (2.75-3.39). AKI rates peaked in April 2020 and the subsequent fall in rates could not be explained by the use of dexamethasone or remdesivir. CONCLUSIONS: AKI is common in adults hospitalized with COVID-19 and it is associated with a heightened risk of mortality. Although the rates of AKI have fallen from the early months of the pandemic, high-risk patients should have their kidney function and fluid status monitored closely.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Cohort Studies , Hospital Mortality , Humans , Male , Prospective Studies , Retrospective Studies , Risk Factors , SARS-CoV-2 , United Kingdom , World Health Organization
18.
Appl Environ Microbiol ; 87(14): e0052621, 2021 06 25.
Article in English | MEDLINE | ID: covidwho-1408384

ABSTRACT

The transmission of SARS-CoV-2 is likely to occur through a number of routes, including contact with contaminated surfaces. Many studies have used reverse transcription-PCR (RT-PCR) analysis to detect SARS-CoV-2 RNA on surfaces, but seldom has viable virus been detected. This paper investigates the viability over time of SARS-CoV-2 dried onto a range of materials and compares viability of the virus to RNA copies recovered and whether virus viability is concentration dependent. Viable virus persisted for the longest time on surgical mask material and stainless steel, with a 99.9% reduction in viability by 122 and 114 h, respectively. Viability of SARS-CoV-2 reduced the fastest on a polyester shirt, with a 99.9% reduction within 2.5 h. Viability on the bank note was reduced second fastest, with 99.9% reduction in 75 h. RNA on all surfaces exhibited a 1-log reduction in genome copy number recovery over 21 days. The findings show that SARS-CoV-2 is most stable on nonporous hydrophobic surfaces. RNA is highly stable when dried on surfaces, with only 1-log reduction in recovery over 3 weeks. In comparison, SARS-CoV-2 viability reduced more rapidly, but this loss in viability was found to be independent of starting concentration. Expected levels of SARS-CoV-2 viable environmental surface contamination would lead to undetectable levels within 2 days. Therefore, when RNA is detected on surfaces, it does not directly indicate the presence of viable virus, even at low cycle threshold values. IMPORTANCE This study shows the impact of material type on the viability of SARS-CoV-2 on surfaces. It demonstrates that the decay rate of viable SARS-CoV-2 is independent of starting concentration. However, RNA shows high stability on surfaces over extended periods. This has implications for interpretation of surface sampling results using RT-PCR to determine the possibility of viable virus from a surface, where RT-PCR is not an appropriate technique to determine viable virus. Unless sampled immediately after contamination, it is difficult to align RNA copy numbers to quantity of viable virus on a surface.


Subject(s)
COVID-19 , Fomites/virology , Personal Protective Equipment/virology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Humans , Microbial Viability , Surface Properties
19.
Lancet Respir Med ; 9(7): 773-785, 2021 07.
Article in English | MEDLINE | ID: covidwho-1337040

ABSTRACT

BACKGROUND: Mortality rates in hospitalised patients with COVID-19 in the UK appeared to decline during the first wave of the pandemic. We aimed to quantify potential drivers of this change and identify groups of patients who remain at high risk of dying in hospital. METHODS: In this multicentre prospective observational cohort study, the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK recruited a prospective cohort of patients with COVID-19 admitted to 247 acute hospitals in England, Scotland, and Wales during the first wave of the pandemic (between March 9 and Aug 2, 2020). We included all patients aged 18 years and older with clinical signs and symptoms of COVID-19 or confirmed COVID-19 (by RT-PCR test) from assumed community-acquired infection. We did a three-way decomposition mediation analysis using natural effects models to explore associations between week of admission and in-hospital mortality, adjusting for confounders (demographics, comorbidities, and severity of illness) and quantifying potential mediators (level of respiratory support and steroid treatment). The primary outcome was weekly in-hospital mortality at 28 days, defined as the proportion of patients who had died within 28 days of admission of all patients admitted in the observed week, and it was assessed in all patients with an outcome. This study is registered with the ISRCTN Registry, ISRCTN66726260. FINDINGS: Between March 9, and Aug 2, 2020, we recruited 80 713 patients, of whom 63 972 were eligible and included in the study. Unadjusted weekly in-hospital mortality declined from 32·3% (95% CI 31·8-32·7) in March 9 to April 26, 2020, to 16·4% (15·0-17·8) in June 15 to Aug 2, 2020. Reductions in mortality were observed in all age groups, in all ethnic groups, for both sexes, and in patients with and without comorbidities. After adjustment, there was a 32% reduction in the risk of mortality per 7-week period (odds ratio [OR] 0·68 [95% CI 0·65-0·71]). The higher proportions of patients with severe disease and comorbidities earlier in the first wave (March and April) than in June and July accounted for 10·2% of this reduction. The use of respiratory support changed during the first wave, with gradually increased use of non-invasive ventilation over the first wave. Changes in respiratory support and use of steroids accounted for 22·2%, OR 0·95 (0·94-0·95) of the reduction in in-hospital mortality. INTERPRETATION: The reduction in in-hospital mortality in patients with COVID-19 during the first wave in the UK was partly accounted for by changes in the case-mix and illness severity. A significant reduction in in-hospital mortality was associated with differences in respiratory support and critical care use, which could partly reflect accrual of clinical knowledge. The remaining improvement in in-hospital mortality is not explained by these factors, and could be associated with changes in community behaviour, inoculum dose, and hospital capacity strain. FUNDING: National Institute for Health Research and the Medical Research Council.


Subject(s)
COVID-19/mortality , Hospital Mortality , Aged , Aged, 80 and over , COVID-19/epidemiology , Clinical Protocols , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology , World Health Organization
20.
Lancet Respir Med ; 9(7): 699-711, 2021 07.
Article in English | MEDLINE | ID: covidwho-1337033

ABSTRACT

BACKGROUND: Studies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use. METHODS: We analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16-49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting ß-agonists [SABAs], and long-acting ß-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma. FINDINGS: 75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16-49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16-49 years: adjusted odds ratio [OR] 1·20 [95% CI 1·05-1·37]; p=0·0080; patients aged ≥50 years: adjusted OR 1·17 [1·08-1·27]; p<0·0001), and patients aged 50 years and older with chronic pulmonary disease (with or without asthma) were significantly less likely than those without a respiratory condition to receive critical care (adjusted OR 0·66 [0·60-0·72] for those without asthma and 0·74 [0·62-0·87] for those with asthma; p<0·0001 for both). In patients aged 16-49 years, only those with severe asthma had a significant increase in mortality compared to those with no asthma (adjusted hazard ratio [HR] 1·17 [95% CI 0·73-1·86] for those on no asthma therapy, 0·99 [0·61-1·58] for those on SABAs only, 0·94 [0·62-1·43] for those on inhaled corticosteroids only, 1·02 [0·67-1·54] for those on inhaled corticosteroids plus LABAs, and 1·96 [1·25-3·08] for those with severe asthma). Among patients aged 50 years and older, those with chronic pulmonary disease had a significantly increased mortality risk, regardless of inhaled corticosteroid use, compared to patients without an underlying respiratory condition (adjusted HR 1·16 [95% CI 1·12-1·22] for those not on inhaled corticosteroids, and 1·10 [1·04-1·16] for those on inhaled corticosteroids; p<0·0001). Patients aged 50 years and older with severe asthma also had an increased mortality risk compared to those not on asthma therapy (adjusted HR 1·24 [95% CI 1·04-1·49]). In patients aged 50 years and older, inhaled corticosteroid use within 2 weeks of hospital admission was associated with decreased mortality in those with asthma, compared to those without an underlying respiratory condition (adjusted HR 0·86 [95% CI 0·80-0·92]). INTERPRETATION: Underlying respiratory conditions are common in patients admitted to hospital with COVID-19. Regardless of the severity of symptoms at admission and comorbidities, patients with asthma were more likely, and those with chronic pulmonary disease less likely, to receive critical care than patients without an underlying respiratory condition. In patients aged 16 years and older, severe asthma was associated with increased mortality compared to non-severe asthma. In patients aged 50 years and older, inhaled corticosteroid use in those with asthma was associated with lower mortality than in patients without an underlying respiratory condition; patients with chronic pulmonary disease had significantly increased mortality compared to those with no underlying respiratory condition, regardless of inhaled corticosteroid use. Our results suggest that the use of inhaled corticosteroids, within 2 weeks of admission, improves survival for patients aged 50 years and older with asthma, but not for those with chronic pulmonary disease. FUNDING: National Institute for Health Research, Medical Research Council, NIHR Health Protection Research Units in Emerging and Zoonotic Infections at the University of Liverpool and in Respiratory Infections at Imperial College London in partnership with Public Health England.


Subject(s)
Asthma/complications , Asthma/mortality , COVID-19/complications , COVID-19/mortality , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/mortality , Adolescent , Adult , Clinical Protocols , Cohort Studies , Female , Hospital Mortality , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Risk Assessment , United Kingdom , World Health Organization , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL