Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Interface Focus ; 12(2): 20210080, 2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1707073


The fluid mechanical processes that govern the spread of infectious agents through the air in complex spaces are reviewed and the scientific gaps and challenges identified and discussed. Air, expelled from the nose and mouth, creates turbulent jets that form loosely coherent structures which quickly slow. For the transport and dispersion of aerosols, the suitability of the Eulerian as well as the Lagrangian approaches are brought into context. The effects of buoyancy and external turbulence are explored and shown to influence the horizontal extent of expulsion through distinct mechanisms which both inhibit penetration and enhance mixing. The general influence of inhomogeneous turbulence and stratification on the spread of infectious agents in enclosed complex spaces is discussed.

iScience ; 24(11): 103344, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1481865


Medical procedures can disperse infectious agents and spread disease. Particularly, dental procedures may pose a high risk of disease transmission as they use high-powered instruments operating within the oral cavity that may contain infectious microbiota or viruses. Here we assess the ability of powered dental devices in removing the biofluid films and identified mechanical, hydrodynamic, and aerodynamic forces as the main underlying mechanisms of removal and dispersal processes. Our results indicate that potentially infectious agents can be removed and dispersed immediately after dental instrument engagement with the adherent biofluid film, while the degree of their dispersal is rapidly depleted owing to the removal of the source and dilution by the coolant water. We found that droplets created by high-speed drill interactions typically travel ballistically, while aerosol-laden air tends to flow as a current over surfaces. Our mechanistic investigation offers plausible routes for reducing the spread of infection during invasive medical procedures.