Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS One ; 17(6): e0264298, 2022.
Article in English | MEDLINE | ID: covidwho-2021610

ABSTRACT

The association between COVID-19 symptoms and antibody responses against SARS-CoV-2 is poorly characterized. We analyzed antibody levels in individuals with known SARS-CoV-2 infection to identify potential antibody-symptom associations. Convalescent plasma from 216 SARS-CoV-2 RNA+ individuals with symptomatology information were tested for the presence of IgG to the spike S1 subunit (Euroimmun ELISA), IgG to receptor binding domain (RBD, CoronaCHEK rapid test), and for IgG, IgA, and IgM to nucleocapsid (N, Bio-Rad ELISA). Logistic regression was used to estimate the odds of having a COVID-19 symptom from the antibody response, adjusting for sex and age. Cough strongly associated with antibodies against S1 (adjusted odds ratio [aOR] = 5.33; 95% CI from 1.51 to 18.86) and RBD (aOR = 4.36; CI 1.49, 12.78). In contrast, sore throat significantly associated with the absence of antibodies to S1 and N (aOR = 0.25; CI 0.08, 0.80 and aOR = 0.31; 0.11, 0.91). Similarly, lack of symptoms associated with the absence of antibodies to N and RBD (aOR = 0.16; CI 0.03, 0.97 and aOR = 0.16; CI 0.03, 1.01). Cough appeared to be correlated with a seropositive result, suggesting that SARS-CoV-2 infected individuals exhibiting lower respiratory symptoms generate a robust antibody response. Conversely, those without symptoms or limited to a sore throat while infected with SARS-CoV-2 were likely to lack a detectable antibody response. These findings strongly support the notion that severity of infection correlates with robust antibody response.


Subject(s)
COVID-19 , Pharyngitis , Antibodies, Viral , Antibody Formation , COVID-19/therapy , Cough , Humans , Immunization, Passive , Immunoglobulin G , RNA, Viral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
Clin Infect Dis ; 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1992159

ABSTRACT

Antibody responses to SARS-CoV-2 vaccination are reduced in solid organ transplant recipients (SOTRs). We report that increased levels of pre-existing antibodies to seasonal coronaviruses are associated with decreased antibody response to SARS-CoV-2 vaccination in SOTRs, supporting that antigenic imprinting modulates vaccine responses in this immunosuppressed population.

3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337641

ABSTRACT

Neutralizing antibody responses are attenuated in many solid organ transplant recipients (SOTRs) despite SARS-CoV-2 vaccination. Pre-exposure prophylaxis (PrEP) with the monoclonal antibody combination Tixagevimab and Cilgavimab (T+C) might augment immunoprotection, yet activity against Omicron sublineages in vaccinated SOTRs is unknown. Vaccinated SOTRs who received 300+300mg T+C (either single dose or two 150+150mg doses) within a prospective observational cohort submitted pre- and post-injection samples between 1/10/2022-4/4/2022. Binding antibody (anti-receptor binding domain [RBD], Roche) and surrogate neutralization (%ACE2 inhibition;≥20% connoting neutralizing inhibition, Meso Scale Discovery) were measured against variants including Omicron sublineages BA.1 and BA.2. Data were analyzed using the Wilcoxon matched-pairs signed-rank test and McNemar’s test. Among 61 participants, median (IQR) anti-RBD increased from 424 (IQR <0.8-2322.5) to 3394.5 (IQR 1403.9-7002.5) U/ml post T+C (p<0.001). The proportion demonstrating vaccine strain neutralizing inhibition increased from 46% to 100% post-T+C (p<0.001). BA.1 neutralization was low and did not increase (8% to 16% of participants post-T+C, p=0.06). In contrast, BA.2 neutralization increased from 7% to 72% of participants post-T+C (p<0.001). T+C increased anti-RBD levels, yet BA.1 neutralizing activity was minimal. Encouragingly, BA.2 neutralization was augmented and in the current variant climate T+C PrEP may serve as a useful complement to vaccination in high-risk SOTRs.

4.
Blood Adv ; 6(12): 3678-3683, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1799125

ABSTRACT

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants severely limits available effective monoclonal antibody therapies. Effective drugs are also supply limited. COVID-19 convalescent plasma (CCP) qualified for high antibody levels effectively reduces immunocompetent outpatient hospitalization. The Food and Drug Administration currently allows outpatient CCP for the immunosuppressed. Viral-specific antibody levels in CCP can range 10- to 100-fold between donors, unlike the uniform viral-specific monoclonal antibody dosing. Limited data are available on the efficacy of polyclonal CCP to neutralize variants. We examined 108 pre-δ/pre-ο donor units obtained before March 2021, 20 post-δ COVID-19/postvaccination units, and 1 pre-δ/pre-ο hyperimmunoglobulin preparation for variant-specific virus (vaccine-related isolate [WA-1], δ, and ο) neutralization correlated to Euroimmun S1 immunoglobulin G antibody levels. We observed a two- to fourfold and 20- to 40-fold drop in virus neutralization from SARS-CoV-2 WA-1 to δ or ο, respectively. CCP antibody levels in the upper 10% of the 108 donations as well as 100% of the post-δ COVID-19/postvaccination units and the hyperimmunoglobulin effectively neutralized all 3 variants. High-titer CCP neutralizes SARS-CoV-2 variants despite no previous donor exposure to the variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , United States
5.
Transplantation ; 106(7): 1440-1444, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1788574

ABSTRACT

BACKGROUND: Humoral responses to coronavirus disease 2019 (COVID-19) vaccines are attenuated in solid organ transplant recipients (SOTRs), necessitating additional booster vaccinations. The Omicron variant demonstrates substantial immune evasion, and it is unknown whether additional vaccine doses increase neutralizing capacity versus this variant of concern (VOC) among SOTRs. METHODS: Within an observational cohort, 25 SOTRs with low seroresponse underwent anti-severe acute respiratory syndrome coronavirus 2 spike and receptor-binding domain immunoglobulin (Ig)G testing using a commercially available multiplex ELISA before and after a fourth COVID-19 vaccine dose (D4). Surrogate neutralization (percent angiotensin-converting enzyme 2 inhibition [%ACE2i], range 0%-100% with >20% correlating with live virus neutralization) was measured against full-length spike proteins of the vaccine strain and 5 VOCs including Delta and Omicron. Changes in IgG level and %ACE2i were compared using the paired Wilcoxon signed-rank test. RESULTS: Anti-receptor-binding domain and anti-spike seropositivity increased post-D4 from 56% to 84% and 68% to 88%, respectively. Median (interquartile range) anti-spike antibody significantly increased post-D4 from 42.3 (4.9-134.2) to 228.9 (1115.4-655.8) World Health Organization binding antibody units. %ACE2i (median [interquartile range]) also significantly increased against the vaccine strain (5.8% [0%-16.8%] to 20.6% [5.8%-45.9%]) and the Delta variant (9.1% [4.9%-12.8%] to 17.1% [10.3%-31.7%]), yet neutralization versus Omicron was poor, did not increase post-D4 (4.1% [0%-6.9%] to 0.5% [0%-5.7%]), and was significantly lower than boosted healthy controls. CONCLUSIONS: Although a fourth vaccine dose increases anti-spike IgG and neutralizing capacity against many VOCs, some SOTRs may remain at high risk for Omicron infection despite boosting. Thus, additional protective interventions or alternative vaccination strategies should be urgently explored.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Transplant Recipients , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunoglobulin G/blood , SARS-CoV-2
7.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327587

ABSTRACT

The association between COVID-19 symptoms and antibody responses against SARS-CoV-2 is poorly characterized. We analyzed antibody levels in individuals with known SARS-CoV-2 infection to identify potential antibody-symptom associations. Convalescent plasma from 216 SARS-CoV-2 RNA+ individuals with symptomatology information were tested for the presence of IgG to the spike S1 subunit (Euroimmun ELISA), IgG to receptor binding domain (RBD, CoronaCHEK rapid test), and for IgG, IgA, and IgM to nucleocapsid (N, Bio-Rad ELISA). Logistic regression was used to estimate the odds of having a COVID-19 symptom from the antibody response, adjusting for sex and age. Cough strongly associated with antibodies against S1 (adjusted odds ratio [aOR]= 5.33;95% CI from 1.51 to 18.86) and RBD (aOR=4.36;CI 1.49, 12.78). In contrast, sore throat significantly associated with the absence of antibodies to S1 and N (aOR=0.25;CI 0.08, 0.80 and aOR=0.31;0.11, 0.91). Similarly, lack of symptoms associated with the absence of antibodies to N and RBD (aOR=0.16;CI 0.03, 0.97 and aOR=0.16;CI 0.03, 1.01). Cough appeared to be correlated with a seropositive result, suggesting that SARS-CoV-2 infected individuals exhibiting lower respiratory symptoms generate a robust antibody response. Conversely, those without symptoms or limited to a sore throat while infected with SARS-CoV-2 were likely to lack a detectable antibody response. These findings strongly support the notion that severity of infection correlates with robust antibody response.

8.
Am J Transplant ; 22(4): 1253-1260, 2022 04.
Article in English | MEDLINE | ID: covidwho-1583700

ABSTRACT

Vaccine-induced SARS-CoV-2 antibody responses are attenuated in solid organ transplant recipients (SOTRs) and breakthrough infections are more common. Additional SARS-CoV-2 vaccine doses increase anti-spike IgG in some SOTRs, but it is uncertain whether neutralization of variants of concern (VOCs) is enhanced. We tested 47 SOTRs for clinical and research anti-spike IgG, pseudoneutralization (ACE2 blocking), and live-virus neutralization (nAb) against VOCs before and after a third SARS-CoV-2 vaccine dose (70% mRNA, 30% Ad26.COV2.S) with comparison to 15 healthy controls after two mRNA vaccine doses. We used correlation analysis to compare anti-spike IgG assays and focused on thresholds associated with neutralization. A third SARS-CoV-2 vaccine dose increased median total anti-spike (1.6-fold), pseudoneutralization against VOCs (2.5-fold vs. Delta), and neutralizing antibodies (1.4-fold against Delta). However, neutralization activity was significantly lower than healthy controls (p < .001); 32% of SOTRs had zero detectable nAb against Delta after third vaccination compared to 100% for controls. Correlation with nAb was seen at anti-spike IgG >4 Log10 (AU/ml) on the Euroimmun ELISA and >4 Log10 (AU/ml) on the MSD research assay. These findings highlight benefits of a third vaccine dose for some SOTRs and the need for alternative strategies to improve protection in a significant subset of this population.


Subject(s)
COVID-19 , Organ Transplantation , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Organ Transplantation/adverse effects , SARS-CoV-2 , Transplant Recipients , Vaccines, Synthetic , mRNA Vaccines
9.
[Unspecified Source]; 2020.
Preprint in English | [Unspecified Source] | ID: ppcovidwho-292758

ABSTRACT

BACKGROUND: Rapid point-of-care tests (POCTs) for SARS-CoV-2-specific antibodies vary in performance. A critical need exists to perform head-to-head comparison of these assays. METHODS: Performance of fifteen different lateral flow POCTs for the detection of SARS-CoV-2-specific antibodies was performed on a well characterized set of 100 samples. Of these, 40 samples from known SARS-CoV-2-infected, convalescent individuals (average of 45 days post symptom onset) were used to assess sensitivity. Sixty samples from the pre-pandemic era (negative control), that were known to have been infected with other respiratory viruses (rhinoviruses A, B, C and/or coronavirus 229E, HKU1, NL63 OC43) were used to assess specificity. The timing of seroconversion was assessed on five POCTs on a panel of 272 longitudinal samples from 47 patients of known time since symptom onset. RESULTS: For the assays that were evaluated, the sensitivity and specificity for any reactive band ranged from 55%-97% and 78%-100%, respectively. When assessing the performance of the IgM and the IgG bands alone, sensitivity and specificity ranged from 0%-88% and 80%-100% for IgM and 25%-95% and 90%-100% for IgG. Longitudinal testing revealed that median time post symptom onset to a positive result was 7 days (IQR 5.4, 9.8) for IgM and 8.2 days (IQR 6.3 to 11.3). CONCLUSION: The testing performance varied widely among POCTs with most variation related to the sensitivity of the assays. The IgM band was most likely to misclassify pre-pandemic samples. The appearance of IgM and IgG bands occurred almost simultaneously.

10.
J Infect Dis ; 222(12): 1974-1984, 2020 11 13.
Article in English | MEDLINE | ID: covidwho-1059701

ABSTRACT

BACKGROUND: Convalescent plasma therapy is a leading treatment for conferring temporary immunity to COVID-19-susceptible individuals or for use as post-exposure prophylaxis. However, not all recovered patients develop adequate antibody titers for donation and the relationship between avidity and neutralizing titers is currently not well understood. METHODS: SARS-CoV-2 anti-spike and anti-nucleocapsid IgG titers and avidity were measured in a longitudinal cohort of COVID-19 hospitalized patients (n = 16 individuals) and a cross-sectional sample of convalescent plasma donors (n = 130). Epidemiologic correlates of avidity were examined in donors by linear regression. The association of avidity and a high neutralizing titer (NT) were also assessed in donors using modified Poisson regression. RESULTS: Antibody avidity increased over duration of infection and remained elevated. In convalescent plasma donors, higher levels of anti-spike avidity were associated with older age, male sex, and hospitalization. Higher NTs had a stronger positive correlation with anti-spike IgG avidity (Spearman ρ = 0.386; P < .001) than with anti-nucleocapsid IgG avidity (Spearman ρ = 0.211; P = .026). Increasing levels of anti-spike IgG avidity were associated with high NT (≥160) (adjusted prevalence ratio = 1.58 [95% confidence interval = 1.19-2.12]), independent of age, sex, and hospitalization. CONCLUSIONS: SARS-CoV-2 antibody avidity correlated with duration of infection and higher neutralizing titers, suggesting a potential alternative screening parameter for identifying optimal convalescent plasma donors.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , Antibody Affinity , COVID-19/therapy , Immunoglobulin G/administration & dosage , SARS-CoV-2 , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Blood Donors , Cohort Studies , Cross-Sectional Studies , Female , Humans , Immunization, Passive , Immunoglobulin G/blood , Linear Models , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Young Adult
11.
J Clin Microbiol ; 59(2)2021 01 21.
Article in English | MEDLINE | ID: covidwho-1045660

ABSTRACT

Accurate serological assays to detect antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to characterize the epidemiology of SARS-CoV-2 infection and identify potential candidates for coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) donation. This study compared the performances of commercial enzyme immunoassays (EIAs) with respect to detection of IgG or total antibodies to SARS-CoV-2 and neutralizing antibodies (nAbs). The diagnostic accuracy of five commercially available EIAs (Abbott, Euroimmun, EDI, ImmunoDiagnostics, and Roche) for detection of IgG or total antibodies to SARS-CoV-2 was evaluated using cross-sectional samples from potential CCP donors who had prior molecular confirmation of SARS-CoV-2 infection (n = 214) and samples from prepandemic emergency department patients without SARS-CoV-2 infection (n = 1,099). Of the 214 potential CCP donors, all were sampled >14 days since symptom onset and only a minority (n = 16 [7.5%]) had been hospitalized due to COVID-19; 140 potential CCP donors were tested by all five EIAs and a microneutralization assay. Performed according to the protocols of the manufacturers to detect IgG or total antibodies to SARS-CoV-2, the sensitivity of each EIA ranged from 76.4% to 93.9%, and the specificity of each EIA ranged from 87.0% to 99.6%. Using a nAb titer cutoff value of ≥160 as the reference representing a positive test result (n = 140 CCP donors), the empirical area under the receiver operating curve for each EIA ranged from 0.66 (Roche) to 0.90 (Euroimmun). Commercial EIAs with high diagnostic accuracy to detect SARS-CoV-2 antibodies did not necessarily have high diagnostic accuracy to detect high nAb titers. Some but not all commercial EIAs may be useful in the identification of individuals with high nAb titers among convalescent individuals.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , COVID-19/blood , Cross-Sectional Studies , Humans , Immune Sera/immunology , Immunoenzyme Techniques , Immunoglobulin G/blood , Neutralization Tests , SARS-CoV-2/immunology , Sensitivity and Specificity
12.
J Clin Microbiol ; 59(2)2021 01 21.
Article in English | MEDLINE | ID: covidwho-934065

ABSTRACT

Rapid point-of-care tests (POCTs) for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies vary in performance. A critical need exists to perform head-to-head comparisons of these assays. The performances of 15 different lateral flow POCTs for the detection of SARS-CoV-2-specific antibodies were compared on a well-characterized set of 100 samples. Of these, 40 samples from known SARS-CoV-2-infected, convalescent individuals (collected an average of 45 days after symptom onset) were used to assess sensitivity. Sixty samples from the prepandemic era (negative control) that were known to represent infections with other respiratory viruses (rhinoviruses A, B, and C and/or coronavirus 229E, HKU1, and NL63 OC43) were used to assess specificity. The timing of seroconversion was assessed using five lateral flow assays (LFAs) and a panel of 272 longitudinal samples from 47 patients for whom the time since symptom onset was known. Among the assays that were evaluated, the sensitivity and specificity for any reactive band ranged from 55% to 97% and from 78% to 100%, respectively. Assessing the performance of the IgM and the IgG bands alone, sensitivity and specificity ranged from 0% to 88% and 80% to 100% for IgM and from 25% to 95% and 90% to 100% for IgG, respectively. Longitudinal testing revealed that the median times after symptom onset to a positive result were 7 days (interquartile range [IQR], 5.4 to 9.8) for IgM and 8.2 days (IQR, 6.3 to 11.3) for IgG. The testing performances differed widely among LFAs, with greatest amount of variation related to the sensitivity of the assays. The IgM band was the band most likely to misclassify prepandemic samples. The appearances of IgM and IgG bands occurred almost simultaneously.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Point-of-Care Testing , SARS-CoV-2/isolation & purification , Antibodies, Viral/blood , COVID-19/blood , Cross Reactions , Humans , Immunoassay , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Sensitivity and Specificity , Seroconversion
SELECTION OF CITATIONS
SEARCH DETAIL