Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Vaccine ; 40(31): 4142-4149, 2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-1867882


Over the past two decades, vaccination programmes for vaccine-preventable diseases (VPDs) have expanded across low- and middle-income countries (LMICs). However, the rise of COVID-19 resulted in global disruption to routine immunisation activities. Such disruptions could have a detrimental effect on public health, leading to more deaths from VPDs, particularly without mitigation efforts. Hence, as routine immunisation activities resume, it is important to estimate the effectiveness of different approaches for recovery. We apply an impact extrapolation method developed by the Vaccine Impact Modelling Consortium to estimate the impact of COVID-19-related disruptions with different recovery scenarios for ten VPDs across 112 LMICs. We focus on deaths averted due to routine immunisations occurring in the years 2020-2030 and investigate two recovery scenarios relative to a no-COVID-19 scenario. In the recovery scenarios, we assume a 10% COVID-19-related drop in routine immunisation coverage in the year 2020. We then linearly interpolate coverage to the year 2030 to investigate two routes to recovery, whereby the immunization agenda (IA2030) targets are reached by 2030 or fall short by 10%. We estimate that falling short of the IA2030 targets by 10% leads to 11.26% fewer fully vaccinated persons (FVPs) and 11.34% more deaths over the years 2020-2030 relative to the no-COVID-19 scenario, whereas, reaching the IA2030 targets reduces these proportions to 5% fewer FVPs and 5.22% more deaths. The impact of the disruption varies across the VPDs with diseases where coverage expands drastically in future years facing a smaller detrimental effect. Overall, our results show that drops in routine immunisation coverage could result in more deaths due to VPDs. As the impact of COVID-19-related disruptions is dependent on the vaccination coverage that is achieved over the coming years, the continued efforts of building up coverage and addressing gaps in immunity are vital in the road to recovery.

COVID-19 , Vaccine-Preventable Diseases , COVID-19/prevention & control , Humans , Immunization , Immunization Programs , Vaccination/methods , Vaccine-Preventable Diseases/epidemiology , Vaccine-Preventable Diseases/prevention & control
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331212


Background Evidence to date has shown that inequality in health, and vaccine coverage in particular, can have ramifications to wider society. However, whilst individual studies have sought to characterise these heterogeneities in immunisation coverage at national level, few have taken a broad and quantitative view of the contributing factors to heterogeneity in vaccine coverage and impact. This systematic review aims to highlight these geographic, demographic, and sociodemographic characteristics through a qualitative and quantitative approach, vital to prioritise and optimise vaccination policies. Methods A systematic review of two databases (PubMed and Web of Science) was undertaken using Medical Subject Headings (MeSH) and keywords to identify studies examining factors on vaccine inequality and heterogeneity in vaccine coverage. Inclusion criteria were applied independently by two researchers. Studies including data on key characteristics of interest were further analysed through a meta-analysis to produce a pooled estimate of the risk ratio using a random effects model for that characteristic. Results One hundred and eight studies were included in this review. We found that inequalities in wealth, education, and geographic access can affect vaccine impact and vaccine dropout. We estimated those living in rural areas were not significantly different in terms of full vaccination status compared to urban areas but noted considerable heterogeneity between countries. We found that females were 3% (95%CI[1%, 5%]) less likely to be fully vaccinated than males. Additionally, we estimated that children whose mothers had no formal education were 28% (95%CI[18%,47%]) less likely to be fully vaccinated than those whose mother had primary level, or above, education. Finally, we found that individuals in the poorest wealth quintile were 27% (95%CI [16%,37%]) less likely to be fully vaccinated than those in the richest. Conclusions We found a nuanced picture of inequality in vaccine coverage and access with wealth disparity dominating, and likely driving, other disparities. This review highlights the complex landscape of inequity and further need to design vaccination strategies targeting missed subgroups to improve and recover vaccination coverage following the COVID-19 pandemic. Registration Prospero CRD42021261927

Elife ; 102021 07 13.
Article in English | MEDLINE | ID: covidwho-1308531


Background: Vaccination is one of the most effective public health interventions. We investigate the impact of vaccination activities for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae, and yellow fever over the years 2000-2030 across 112 countries. Methods: Twenty-one mathematical models estimated disease burden using standardised demographic and immunisation data. Impact was attributed to the year of vaccination through vaccine-activity-stratified impact ratios. Results: We estimate 97 (95%CrI[80, 120]) million deaths would be averted due to vaccination activities over 2000-2030, with 50 (95%CrI[41, 62]) million deaths averted by activities between 2000 and 2019. For children under-5 born between 2000 and 2030, we estimate 52 (95%CrI[41, 69]) million more deaths would occur over their lifetimes without vaccination against these diseases. Conclusions: This study represents the largest assessment of vaccine impact before COVID-19-related disruptions and provides motivation for sustaining and improving global vaccination coverage in the future. Funding: VIMC is jointly funded by Gavi, the Vaccine Alliance, and the Bill and Melinda Gates Foundation (BMGF) (BMGF grant number: OPP1157270 / INV-009125). Funding from Gavi is channelled via VIMC to the Consortium's modelling groups (VIMC-funded institutions represented in this paper: Imperial College London, London School of Hygiene and Tropical Medicine, Oxford University Clinical Research Unit, Public Health England, Johns Hopkins University, The Pennsylvania State University, Center for Disease Analysis Foundation, Kaiser Permanente Washington, University of Cambridge, University of Notre Dame, Harvard University, Conservatoire National des Arts et Métiers, Emory University, National University of Singapore). Funding from BMGF was used for salaries of the Consortium secretariat (authors represented here: TBH, MJ, XL, SE-L, JT, KW, NMF, KAMG); and channelled via VIMC for travel and subsistence costs of all Consortium members (all authors). We also acknowledge funding from the UK Medical Research Council and Department for International Development, which supported aspects of VIMC's work (MRC grant number: MR/R015600/1).JHH acknowledges funding from National Science Foundation Graduate Research Fellowship; Richard and Peggy Notebaert Premier Fellowship from the University of Notre Dame. BAL acknowledges funding from NIH/NIGMS (grant number R01 GM124280) and NIH/NIAID (grant number R01 AI112970). The Lives Saved Tool (LiST) receives funding support from the Bill and Melinda Gates Foundation.This paper was compiled by all coauthors, including two coauthors from Gavi. Other funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Bacterial Infections/prevention & control , Bacterial Vaccines/therapeutic use , COVID-19 , Global Health , Models, Biological , SARS-CoV-2 , Bacterial Infections/epidemiology , Humans
Elife ; 102021 06 24.
Article in English | MEDLINE | ID: covidwho-1285537


Background: Childhood immunisation services have been disrupted by the COVID-19 pandemic. WHO recommends considering outbreak risk using epidemiological criteria when deciding whether to conduct preventive vaccination campaigns during the pandemic. Methods: We used two to three models per infection to estimate the health impact of 50% reduced routine vaccination coverage in 2020 and delay of campaign vaccination from 2020 to 2021 for measles vaccination in Bangladesh, Chad, Ethiopia, Kenya, Nigeria, and South Sudan, for meningococcal A vaccination in Burkina Faso, Chad, Niger, and Nigeria, and for yellow fever vaccination in the Democratic Republic of Congo, Ghana, and Nigeria. Our counterfactual comparative scenario was sustaining immunisation services at coverage projections made prior to COVID-19 (i.e. without any disruption). Results: Reduced routine vaccination coverage in 2020 without catch-up vaccination may lead to an increase in measles and yellow fever disease burden in the modelled countries. Delaying planned campaigns in Ethiopia and Nigeria by a year may significantly increase the risk of measles outbreaks (both countries did complete their supplementary immunisation activities (SIAs) planned for 2020). For yellow fever vaccination, delay in campaigns leads to a potential disease burden rise of >1 death per 100,000 people per year until the campaigns are implemented. For meningococcal A vaccination, short-term disruptions in 2020 are unlikely to have a significant impact due to the persistence of direct and indirect benefits from past introductory campaigns of the 1- to 29-year-old population, bolstered by inclusion of the vaccine into the routine immunisation schedule accompanied by further catch-up campaigns. Conclusions: The impact of COVID-19-related disruption to vaccination programs varies between infections and countries. Planning and implementation of campaigns should consider country and infection-specific epidemiological factors and local immunity gaps worsened by the COVID-19 pandemic when prioritising vaccines and strategies for catch-up vaccination. Funding: Bill and Melinda Gates Foundation and Gavi, the Vaccine Alliance.

COVID-19/epidemiology , Immunization Programs/statistics & numerical data , Measles/prevention & control , Meningococcal Infections/prevention & control , Yellow Fever/prevention & control , Adolescent , Adult , Africa/epidemiology , Bangladesh/epidemiology , Child , Child, Preschool , Disease Outbreaks , Humans , Immunization Programs/methods , Infant , Measles/epidemiology , Measles Vaccine/therapeutic use , Meningococcal Infections/epidemiology , Meningococcal Vaccines/therapeutic use , Pandemics , Risk Assessment , SARS-CoV-2 , Vaccination/statistics & numerical data , Yellow Fever/epidemiology , Yellow Fever Vaccine/therapeutic use , Young Adult
Lancet ; 397(10291): 2251, 2021 06 12.
Article in English | MEDLINE | ID: covidwho-1262969

Vaccines , Child , Humans
Emerg Infect Dis ; 26(12): 2854-2862, 2020 12.
Article in English | MEDLINE | ID: covidwho-940167


Coronavirus disease (COVID-19) in Colombia was first diagnosed in a traveler arriving from Italy on February 26, 2020. However, limited data are available on the origins and number of introductions of COVID-19 into the country. We sequenced the causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from 43 clinical samples we collected, along with another 79 genome sequences available from Colombia. We investigated the emergence and importation routes for SARS-CoV-2 into Colombia by using epidemiologic, historical air travel, and phylogenetic observations. Our study provides evidence of multiple introductions, mostly from Europe, and documents >12 lineages. Phylogenetic findings validate the lineage diversity, support multiple importation events, and demonstrate the evolutionary relationship of epidemiologically linked transmission chains. Our results reconstruct the early evolutionary history of SARS-CoV-2 in Colombia and highlight the advantages of genome sequencing to complement COVID-19 outbreak investigations.

COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Genomics/methods , Phylogeny , SARS-CoV-2/genetics , Colombia/epidemiology , Humans , Reproducibility of Results