Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Clin Oncol ; : JCO2102986, 2022 Jun 27.
Article in English | MEDLINE | ID: covidwho-1910387

ABSTRACT

PURPOSE: To examine COVID-19 mRNA vaccine-induced binding and neutralizing antibody responses in patients with non-small-cell lung cancer (NSCLC) to SARS-CoV-2 614D (wild type [WT]) strain and variants of concern after the primary 2-dose and booster vaccination. METHODS: Eighty-two patients with NSCLC and 53 healthy volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and neutralizing antibody responses were evaluated by Meso Scale Discovery assay and live virus Focus Reduction Neutralization Assay, respectively. RESULTS: A majority of patients with NSCLC generated binding and neutralizing antibody titers comparable with the healthy vaccinees after mRNA vaccination, but a subset of patients with NSCLC (25%) made poor responses, resulting in overall lower (six- to seven-fold) titers compared with the healthy cohort (P = < .0001). Although patients age > 70 years had lower immunoglobulin G titers (P = < .01), patients receiving programmed death-1 monotherapy, chemotherapy, or a combination of both did not have a significant impact on the antibody response. Neutralizing antibody titers to the B.1.617.2 (Delta), B.1.351 (Beta), and in particular, B.1.1.529 (Omicron) variants were significantly lower (P = < .0001) compared with the 614D (WT) strain. Booster vaccination led to a significant increase (P = .0001) in the binding and neutralizing antibody titers to the WT and Omicron variant. However, 2-4 months after the booster, we observed a five- to seven-fold decrease in neutralizing titers to WT and Omicron viruses. CONCLUSION: A subset of patients with NSCLC responded poorly to the SARS-CoV-2 mRNA vaccination and had low neutralizing antibodies to the B.1.1.529 Omicron variant. Booster vaccination increased binding and neutralizing antibody titers to Omicron, but antibody titers declined after 3 months. These data highlight the concern for patients with cancer given the rapid spread of SARS-CoV-2 Omicron variant.

2.
Cell Rep Med ; 3(7): 100679, 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1895507

ABSTRACT

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibits reduced susceptibility to vaccine-induced neutralizing antibodies, requiring a boost to generate protective immunity. We assess the magnitude and short-term durability of neutralizing antibodies after homologous and heterologous boosting with mRNA and Ad26.COV2.S vaccines. All prime-boost combinations substantially increase the neutralization titers to Omicron, although the boosted titers decline rapidly within 2 months from the peak response compared with boosted titers against the prototypic D614G variant. Boosted Omicron neutralization titers are substantially higher for homologous mRNA vaccine boosting, and for heterologous mRNA and Ad26.COV2.S vaccine boosting, compared with homologous Ad26.COV2.S boosting. Homologous mRNA vaccine boosting generates nearly equivalent neutralizing activity against Omicron sublineages BA.1, BA.2, and BA.3 but modestly reduced neutralizing activity against BA.2.12.1 and BA.4/BA.5 compared with BA.1. These results have implications for boosting requirements to protect against Omicron and future variants of SARS-CoV-2. This trial was conducted under ClincalTrials.gov: NCT04889209.


Subject(s)
COVID-19 , Viral Vaccines , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , RNA, Messenger , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
3.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-333335

ABSTRACT

The Omicron variant of SARS-CoV-2 exhibits reduced susceptibility to vaccine-induced neutralizing antibodies, requiring a boost to generate protective immunity. Little is known about the durability of vaccine-boosted omicron neutralizing antibodies and the potential impact of boosting with heterologous vaccine modalities. We assessed the magnitude and short-term durability of neutralizing antibodies after homologous and heterologous boosting with mRNA and Ad26.COV2.S vaccines. Using pseudovirus and live virus neutralization assays, all prime-boost combinations substantially increased the neutralization titers to Omicron although the boosted titers declined rapidly within 2 months from the peak response compared to boosted titers against the prototypic D614G variant. Boosted Omicron neutralization titers were substantially higher for homologous mRNA vaccine boosting, and for heterologous mRNA and Ad26.COV2.S vaccine boosting, compared to homologous Ad26.COV2.S boosting. Homologous mRNA vaccine boosting generated nearly equivalent neutralizing activity against Omicron subvariants BA.1, BA.2 and BA.3. These results have implications for boosting requirements to protect against Omicron and future variants of SARS-CoV-2.

4.
Infect Control Hosp Epidemiol ; : 1-8, 2022 Feb 14.
Article in English | MEDLINE | ID: covidwho-1713057

ABSTRACT

OBJECTIVES: To determine the incidence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among healthcare personnel (HCP) and to assess occupational risks for SARS-CoV-2 infection. DESIGN: Prospective cohort of healthcare personnel (HCP) followed for 6 months from May through December 2020. SETTING: Large academic healthcare system including 4 hospitals and affiliated clinics in Atlanta, Georgia. PARTICIPANTS: HCP, including those with and without direct patient-care activities, working during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Incident SARS-CoV-2 infections were determined through serologic testing for SARS-CoV-2 IgG at enrollment, at 3 months, and at 6 months. HCP completed monthly surveys regarding occupational activities. Multivariable logistic regression was used to identify occupational factors that increased the risk of SARS-CoV-2 infection. RESULTS: Of the 304 evaluable HCP that were seronegative at enrollment, 26 (9%) seroconverted for SARS-CoV-2 IgG by 6 months. Overall, 219 participants (73%) self-identified as White race, 119 (40%) were nurses, and 121 (40%) worked on inpatient medical-surgical floors. In a multivariable analysis, HCP who identified as Black race were more likely to seroconvert than HCP who identified as White (odds ratio, 4.5; 95% confidence interval, 1.3-14.2). Increased risk for SARS-CoV-2 infection was not identified for any occupational activity, including spending >50% of a typical shift at a patient's bedside, working in a COVID-19 unit, or performing or being present for aerosol-generating procedures (AGPs). CONCLUSIONS: In our study cohort of HCP working in an academic healthcare system, <10% had evidence of SARS-CoV-2 infection over 6 months. No specific occupational activities were identified as increasing risk for SARS-CoV-2 infection.

5.
N Engl J Med ; 386(11): 1046-1057, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1655751

ABSTRACT

BACKGROUND: Although the three vaccines against coronavirus disease 2019 (Covid-19) that have received emergency use authorization in the United States are highly effective, breakthrough infections are occurring. Data are needed on the serial use of homologous boosters (same as the primary vaccine) and heterologous boosters (different from the primary vaccine) in fully vaccinated recipients. METHODS: In this phase 1-2, open-label clinical trial conducted at 10 sites in the United States, adults who had completed a Covid-19 vaccine regimen at least 12 weeks earlier and had no reported history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection received a booster injection with one of three vaccines: mRNA-1273 (Moderna) at a dose of 100 µg, Ad26.COV2.S (Johnson & Johnson-Janssen) at a dose of 5×1010 virus particles, or BNT162b2 (Pfizer-BioNTech) at a dose of 30 µg. The primary end points were safety, reactogenicity, and humoral immunogenicity on trial days 15 and 29. RESULTS: Of the 458 participants who were enrolled in the trial, 154 received mRNA-1273, 150 received Ad26.COV2.S, and 153 received BNT162b2 as booster vaccines; 1 participant did not receive the assigned vaccine. Reactogenicity was similar to that reported for the primary series. More than half the recipients reported having injection-site pain, malaise, headache, or myalgia. For all combinations, antibody neutralizing titers against a SARS-CoV-2 D614G pseudovirus increased by a factor of 4 to 73, and binding titers increased by a factor of 5 to 55. Homologous boosters increased neutralizing antibody titers by a factor of 4 to 20, whereas heterologous boosters increased titers by a factor of 6 to 73. Spike-specific T-cell responses increased in all but the homologous Ad26.COV2.S-boosted subgroup. CD8+ T-cell levels were more durable in the Ad26.COV2.S-primed recipients, and heterologous boosting with the Ad26.COV2.S vaccine substantially increased spike-specific CD8+ T cells in the mRNA vaccine recipients. CONCLUSIONS: Homologous and heterologous booster vaccines had an acceptable safety profile and were immunogenic in adults who had completed a primary Covid-19 vaccine regimen at least 12 weeks earlier. (Funded by the National Institute of Allergy and Infectious Diseases; DMID 21-0012 ClinicalTrials.gov number, NCT04889209.).


Subject(s)
/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Immunogenicity, Vaccine , Adult , Aged , Aged, 80 and over , COVID-19 Vaccines/adverse effects , Female , Humans , Immunization, Secondary/adverse effects , Injections, Intramuscular/adverse effects , Male , Middle Aged , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
6.
Front Public Health ; 9: 744535, 2021.
Article in English | MEDLINE | ID: covidwho-1566663

ABSTRACT

Background: Antibodies against SARS-CoV-2 can be detected by various testing platforms, but a detailed understanding of assay performance is critical. Methods: We developed and validated a simple enzyme-linked immunosorbent assay (ELISA) to detect IgG binding to the receptor-binding domain (RBD) of SARS-CoV-2, which was then applied for surveillance. ELISA results were compared to a set of complimentary serologic assays using a large panel of clinical research samples. Results: The RBD ELISA exhibited robust performance in ROC curve analysis (AUC> 0.99; Se = 89%, Sp = 99.3%). Antibodies were detected in 23/353 (6.5%) healthcare workers, 6/9 RT-PCR-confirmed mild COVID-19 cases, and 0/30 non-COVID-19 cases from an ambulatory site. RBD ELISA showed a positive correlation with neutralizing activity (p = <0.0001, R 2 = 0.26). Conclusions: We applied a validated SARS-CoV-2-specific IgG ELISA in multiple contexts and performed orthogonal testing on samples. This study demonstrates the utility of a simple serologic assay for detecting prior SARS-CoV-2 infection, particularly as a tool for efficiently testing large numbers of samples as in population surveillance. Our work also highlights that precise understanding of SARS-CoV-2 infection and immunity at the individual level, particularly with wide availability of vaccination, may be improved by orthogonal testing and/or more complex assays such as multiplex bead assays.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Health Priorities , Humans , Sensitivity and Specificity
7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-294151

ABSTRACT

ABSTRACT Background While Coronavirus disease 2019 (Covid-19) vaccines are highly effective, breakthrough infections are occurring. Booster vaccinations have recently received emergency use authorization (EUA) for certain populations but are restricted to homologous mRNA vaccines. We evaluated homologous and heterologous booster vaccination in persons who had received an EUA Covid-19 vaccine regimen. Methods In this phase 1/2 open-label clinical trial conducted at ten U.S. sites, adults who received one of three EUA Covid-19 vaccines at least 12 weeks prior to enrollment and had no reported history of SARS-CoV-2 infection received a booster injection with one of three vaccines (Moderna mRNA-1273 100-μg, Janssen Ad26.COV2.S 5×10 10 virus particles, or Pfizer-BioNTech BNT162b2 30-μg;nine combinations). The primary outcomes were safety, reactogenicity, and humoral immunogenicity on study days 15 and 29. Results 458 individuals were enrolled: 154 received mRNA-1273, 150 received Ad26.CoV2.S, and 153 received BNT162b2 booster vaccines. Reactogenicity was similar to that reported for the primary series. Injection site pain, malaise, headache, and myalgia occurred in more than half the participants. Booster vaccines increased the neutralizing activity against a D614G pseudovirus (4.2-76-fold) and binding antibody titers (4.6-56-fold) for all combinations;homologous boost increased neutralizing antibody titers 4.2-20-fold whereas heterologous boost increased titers 6.2-76-fold. Day 15 neutralizing and binding antibody titers varied by 28.7-fold and 20.9-fold, respectively, across the nine prime-boost combinations. Conclusion Homologous and heterologous booster vaccinations were well-tolerated and immunogenic in adults who completed a primary Covid-19 vaccine regimen at least 12 weeks earlier. (Funded by National Institute of Allergy and Infectious Diseases;Clinical Trials.gov number, NCT04889209 )

8.
Microbiol Spectr ; 9(2): e0045821, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1398599

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic with over 152 million cases and 3.19 million deaths reported by early May 2021. Understanding the serological response to SARS-CoV-2 is critical to determining the burden of infection and disease (coronavirus disease 2019 [COVID-19]) and transmission dynamics. We developed a capture IgM assay because it should have better sensitivity and specificity than the commonly used indirect assay. Here, we report the development and performance of a capture IgM enzyme-linked immunosorbent assay (ELISA) and a companion indirect IgG ELISA for the spike (S) and nucleocapsid (N) proteins and the receptor-binding domain (RBD) of S. We found that among the IgM ELISAs, the S ELISA was positive in 76% of 55 serum samples from SARS-CoV-2 PCR-positive patients, the RBD ELISA was positive in 55% of samples, and the N ELISA was positive in 15% of samples. The companion indirect IgG ELISAs were positive for S in 89% of the 55 serum samples, RBD in 78%, and N in 85%. While the specificities for IgM RBD, S, and N ELISAs and IgG S and RBD ELISAs were 97% to 100%, the specificity of the N IgG ELISA was lower (89%). RBD-specific IgM antibodies became undetectable by 3 to 6 months, and S IgM reached low levels at 6 months. The corresponding IgG S, RBD, and N antibodies persisted with some decreases in levels over this time period. These capture IgM ELISAs and the companion indirect IgG ELISAs should enhance serologic studies of SARS-CoV-2 infections. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has inflicted tremendous loss of lives, overwhelmed health care systems, and disrupted all aspects of life worldwide since its emergence in Wuhan, China, in December 2019. Detecting current and past infection by PCR or serology is important to understanding and controlling SARS-CoV-2. With increasing prevalence of past infection or vaccination, IgG antibodies are less helpful in diagnosing a current infection. IgM antibodies indicate a more recent infection and can supplement PCR diagnosis. We report an alternative method, capture IgM, to detect serum IgM antibodies, which should be more sensitive and specific than most currently used methods. We describe this capture IgM assay and a companion indirect IgG assay for the SARS-CoV-2 spike (S), nucleocapsid (N), and receptor-binding domain (RBD) proteins. These assays can add value to diagnostic and serologic studies of coronavirus disease 2019 (COVID-19).


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoglobulin M/blood , SARS-CoV-2/immunology , COVID-19/therapy , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunization, Passive , Immunoglobulin G/blood , Phosphoproteins/immunology , Sensitivity and Specificity , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology
9.
Open Forum Infect Dis ; 8(7): ofab315, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1316834

ABSTRACT

We compared rates of emergency department visits or hospitalizations among ambulatory coronavirus disease 2019 (COVID-19) patients treated with monoclonal antibody (mAb) therapy (n = 305) vs untreated patients (n = 6354). Treatment was associated with decreased encounters within 30 days (adjusted odds ratio, 0.23 [95% confidence interval, .15-.36]). Our findings support treatment of acute COVID-19 with mAbs.

10.
Cell Rep Med ; 2(7): 100354, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1294297

ABSTRACT

Ending the COVID-19 pandemic will require long-lived immunity to SARS-CoV-2. Here, we evaluate 254 COVID-19 patients longitudinally up to 8 months and find durable broad-based immune responses. SARS-CoV-2 spike binding and neutralizing antibodies exhibit a bi-phasic decay with an extended half-life of >200 days suggesting the generation of longer-lived plasma cells. SARS-CoV-2 infection also boosts antibody titers to SARS-CoV-1 and common betacoronaviruses. In addition, spike-specific IgG+ memory B cells persist, which bodes well for a rapid antibody response upon virus re-exposure or vaccination. Virus-specific CD4+ and CD8+ T cells are polyfunctional and maintained with an estimated half-life of 200 days. Interestingly, CD4+ T cell responses equally target several SARS-CoV-2 proteins, whereas the CD8+ T cell responses preferentially target the nucleoprotein, highlighting the potential importance of including the nucleoprotein in future vaccines. Taken together, these results suggest that broad and effective immunity may persist long-term in recovered COVID-19 patients.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19/immunology , Immunologic Memory , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Longitudinal Studies , Male , Middle Aged , Young Adult
11.
Infect Control Hosp Epidemiol ; 43(3): 381-386, 2022 03.
Article in English | MEDLINE | ID: covidwho-1246283

ABSTRACT

Among 353 healthcare personnel in a longitudinal cohort in 4 hospitals in Atlanta, Georgia (May-June 2020), 23 (6.5%) had severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies. Spending >50% of a typical shift at the bedside (OR, 3.4; 95% CI, 1.2-10.5) and black race (OR, 8.4; 95% CI, 2.7-27.4) were associated with SARS-CoV-2 seropositivity.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Cross-Sectional Studies , Delivery of Health Care , Health Personnel , Humans , Risk Factors
12.
J Immunol ; 206(11): 2605-2613, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1218655

ABSTRACT

The factors that control the development of an effective immune response to the recently emerged SARS-CoV-2 virus are poorly understood. In this study, we provide a cross-sectional analysis of the dynamics of B cell responses to SARS-CoV-2 infection in hospitalized COVID-19 patients. We observe changes in B cell subsets consistent with a robust humoral immune response, including significant expansion of plasmablasts and activated receptor-binding domain (RBD)-specific memory B cell populations. We observe elevated titers of Abs to SARS-CoV-2 RBD, full-length Spike, and nucleoprotein over the course of infection, with higher levels of RBD-specific IgG correlating with increased serum neutralization. Depletion of RBD-specific Abs from serum removed a major portion of neutralizing activity in most individuals. Some donors did retain significant residual neutralization activity, suggesting a potential Ab subset targeting non-RBD epitopes. Taken together, these findings are instructive for future vaccine design and mAb strategies.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Immunity, Cellular , Immunologic Memory , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Acute Disease , Cell Line , Female , Humans , Male , Protein Domains
13.
Cell Host Microbe ; 29(4): 516-521.e3, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1141671

ABSTRACT

The emergence of SARS-CoV-2 variants with mutations in the spike protein is raising concerns about the efficacy of infection- or vaccine-induced antibodies. We compared antibody binding and live virus neutralization of sera from naturally infected and Moderna-vaccinated individuals against two SARS-CoV-2 variants: B.1 containing the spike mutation D614G and the emerging B.1.351 variant containing additional spike mutations and deletions. Sera from acutely infected and convalescent COVID-19 patients exhibited a 3-fold reduction in binding antibody titers to the B.1.351 variant receptor-binding domain of the spike protein and a 3.5-fold reduction in neutralizing antibody titers against SARS-CoV-2 B.1.351 variant compared to the B.1 variant. Similar results were seen with sera from Moderna-vaccinated individuals. Despite reduced antibody titers against the B.1.351 variant, sera from infected and vaccinated individuals containing polyclonal antibodies to the spike protein could still neutralize SARS-CoV-2 B.1.351, suggesting that protective humoral immunity may be retained against this variant.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Binding Sites , COVID-19/prevention & control , Humans , Neutralization Tests , Receptors, Virus/chemistry
14.
J Clin Microbiol ; 59(1)2020 12 17.
Article in English | MEDLINE | ID: covidwho-991751

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of an ongoing pandemic that has infected over 36 million and killed over 1 million people. Informed implementation of government public health policies depends on accurate data on SARS-CoV-2 immunity at a population scale. We hypothesized that detection of SARS-CoV-2 salivary antibodies could serve as a noninvasive alternative to serological testing for monitoring of SARS-CoV-2 infection and seropositivity at a population scale. We developed a multiplex SARS-CoV-2 antibody immunoassay based on Luminex technology that comprised 12 CoV antigens, mostly derived from SARS-CoV-2 nucleocapsid (N) and spike (S). Saliva and sera collected from confirmed coronavirus disease 2019 (COVID-19) cases and from the pre-COVID-19 era were tested for IgG, IgA, and IgM to the antigen panel. Matched saliva and serum IgG responses (n = 28) were significantly correlated. The salivary anti-N IgG response resulted in the highest sensitivity (100%), exhibiting a positive response in 24/24 reverse transcription-PCR (RT-PCR)-confirmed COVID-19 cases sampled at >14 days post-symptom onset (DPSO), whereas the salivary anti-receptor binding domain (RBD) IgG response yielded 100% specificity. Temporal kinetics of IgG in saliva were consistent with those observed in blood and indicated that most individuals seroconvert at around 10 DPSO. Algorithms employing a combination of the IgG responses to N and S antigens result in high diagnostic accuracy (100%) by as early as 10 DPSO. These results support the use of saliva-based antibody testing as a noninvasive and scalable alternative to blood-based antibody testing.


Subject(s)
Antibodies, Viral/analysis , Antibodies, Viral/blood , COVID-19/diagnosis , SARS-CoV-2/immunology , Saliva/immunology , COVID-19 Nucleic Acid Testing/methods , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Spike Glycoprotein, Coronavirus/immunology
15.
Pediatrics ; 146(6)2020 12.
Article in English | MEDLINE | ID: covidwho-745069

ABSTRACT

OBJECTIVES: We aimed to measure severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serological responses in children hospitalized with multisystem inflammatory syndrome in children (MIS-C) compared with those with coronavirus disease 2019 (COVID-19), those with Kawasaki disease (KD), and hospitalized pediatric controls. METHODS: From March 17, 2020, to May 26, 2020, we prospectively identified hospitalized children with MIS-C (n = 10), symptomatic COVID-19 (n = 10), and KD (n = 5) and hospitalized controls (n = 4) at Children's Healthcare of Atlanta. With institutional review board approval, we obtained prospective and residual blood samples from these children and measured SARS-CoV-2 spike receptor-binding domain (RBD) immunoglobulin M and immunoglobulin G (IgG), full-length spike IgG, and nucleocapsid protein antibodies using quantitative enzyme-linked immunosorbent assays and SARS-CoV-2 neutralizing antibodies using live-virus focus-reduction neutralization assays. We statistically compared the log-transformed antibody titers among groups and performed linear regression analyses. RESULTS: All children with MIS-C had high titers of SARS-CoV-2 RBD IgG antibodies, which correlated with full-length spike IgG antibodies (R 2 = 0.956; P < .001), nucleocapsid protein antibodies (R 2 = 0.846; P < .001), and neutralizing antibodies (R 2 = 0.667; P < .001). Children with MIS-C had significantly higher SARS-CoV-2 RBD IgG antibody titers (geometric mean titer 6800; 95% confidence interval 3495-13 231) than children with COVID-19 (geometric mean titer 626; 95% confidence interval 251-1563; P < .001), children with KD (geometric mean titer 124; 95% confidence interval 91-170; P < .001), and hospitalized controls (geometric mean titer 85; P < .001). All children with MIS-C also had detectable RBD immunoglobulin M antibodies, indicating recent SARS-CoV-2 infection. RBD IgG titers correlated with the erythrocyte sedimentation rate (R 2 = 0.512; P < .046) and with hospital (R 2 = 0.548; P = .014) and ICU lengths of stay (R 2 = 0.590; P = .010). CONCLUSIONS: Quantitative SARS-CoV-2 serology may have a role in establishing the diagnosis of MIS-C, distinguishing it from similar clinical entities, and stratifying risk for adverse outcomes.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Mucocutaneous Lymph Node Syndrome/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Antibodies, Neutralizing/blood , Blood Sedimentation , COVID-19/blood , COVID-19/diagnosis , COVID-19 Serological Testing , Case-Control Studies , Child , Child, Preschool , Coronavirus Nucleocapsid Proteins/blood , Diagnosis, Differential , Female , Hospitalization , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Infant , Infant, Newborn , Length of Stay , Male , Mucocutaneous Lymph Node Syndrome/blood , Mucocutaneous Lymph Node Syndrome/diagnosis , Neutralization Tests , Phosphoproteins/blood , Phosphoproteins/immunology , Prospective Studies , Regression Analysis , Spike Glycoprotein, Coronavirus/blood , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/diagnosis , Young Adult
16.
Science ; 369(6508): 1210-1220, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-704393

ABSTRACT

Coronavirus disease 2019 (COVID-19) represents a global crisis, yet major knowledge gaps remain about human immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed immune responses in 76 COVID-19 patients and 69 healthy individuals from Hong Kong and Atlanta, Georgia, United States. In the peripheral blood mononuclear cells (PBMCs) of COVID-19 patients, we observed reduced expression of human leukocyte antigen class DR (HLA-DR) and proinflammatory cytokines by myeloid cells as well as impaired mammalian target of rapamycin (mTOR) signaling and interferon-α (IFN-α) production by plasmacytoid dendritic cells. By contrast, we detected enhanced plasma levels of inflammatory mediators-including EN-RAGE, TNFSF14, and oncostatin M-which correlated with disease severity and increased bacterial products in plasma. Single-cell transcriptomics revealed a lack of type I IFNs, reduced HLA-DR in the myeloid cells of patients with severe COVID-19, and transient expression of IFN-stimulated genes. This was consistent with bulk PBMC transcriptomics and transient, low IFN-α levels in plasma during infection. These results reveal mechanisms and potential therapeutic targets for COVID-19.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , COVID-19 , Cytokines/blood , DNA, Bacterial/blood , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Flow Cytometry , HLA-DR Antigens/analysis , Humans , Immunity , Immunity, Innate , Immunoglobulins/blood , Immunoglobulins/immunology , Inflammation Mediators/blood , Interferon Type I/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/blood , Male , Myeloid Cells/immunology , Myeloid Cells/metabolism , Pandemics , SARS-CoV-2 , Signal Transduction , Single-Cell Analysis , Systems Biology , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic , Transcriptome
17.
Sci Immunol ; 5(48)2020 06 11.
Article in English | MEDLINE | ID: covidwho-595199

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that first emerged in late 2019 is responsible for a pandemic of severe respiratory illness. People infected with this highly contagious virus can present with clinically inapparent, mild, or severe disease. Currently, the virus infection in individuals and at the population level is being monitored by PCR testing of symptomatic patients for the presence of viral RNA. There is an urgent need for SARS-CoV-2 serologic tests to identify all infected individuals, irrespective of clinical symptoms, to conduct surveillance and implement strategies to contain spread. As the receptor binding domain (RBD) of the spike protein is poorly conserved between SARS-CoVs and other pathogenic human coronaviruses, the RBD represents a promising antigen for detecting CoV-specific antibodies in people. Here we use a large panel of human sera (63 SARS-CoV-2 patients and 71 control subjects) and hyperimmune sera from animals exposed to zoonotic CoVs to evaluate RBD's performance as an antigen for reliable detection of SARS-CoV-2-specific antibodies. By day 9 after the onset of symptoms, the recombinant SARS-CoV-2 RBD antigen was highly sensitive (98%) and specific (100%) for antibodies induced by SARS-CoVs. We observed a strong correlation between levels of RBD binding antibodies and SARS-CoV-2 neutralizing antibodies in patients. Our results, which reveal the early kinetics of SARS-CoV-2 antibody responses, support using the RBD antigen in serological diagnostic assays and RBD-specific antibody levels as a correlate of SARS-CoV-2 neutralizing antibodies in people.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Immunodominant Epitopes/immunology , Pneumonia, Viral/diagnosis , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/chemistry , Zoonoses/blood , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/virology , Humans , Kinetics , Mice , Mice, Inbred BALB C , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/virology , Protein Binding , Rabbits , SARS Virus/chemistry , SARS Virus/immunology , SARS-CoV-2 , Serologic Tests , Zoonoses/virology
18.
Cell Rep Med ; 1(3): 100040, 2020 06 23.
Article in English | MEDLINE | ID: covidwho-549041

ABSTRACT

SARS-CoV-2, the virus responsible for COVID-19, is causing a devastating worldwide pandemic, and there is a pressing need to understand the development, specificity, and neutralizing potency of humoral immune responses during acute infection. We report a cross-sectional study of antibody responses to the receptor-binding domain (RBD) of the spike protein and virus neutralization activity in a cohort of 44 hospitalized COVID-19 patients. RBD-specific IgG responses are detectable in all patients 6 days after PCR confirmation. Isotype switching to IgG occurs rapidly, primarily to IgG1 and IgG3. Using a clinical SARS-CoV-2 isolate, neutralizing antibody titers are detectable in all patients by 6 days after PCR confirmation and correlate with RBD-specific binding IgG titers. The RBD-specific binding data were further validated in a clinical setting with 231 PCR-confirmed COVID-19 patient samples. These findings have implications for understanding protective immunity against SARS-CoV-2, therapeutic use of immune plasma, and development of much-needed vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL