Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Sci Rep ; 12(1): 4599, 2022 03 29.
Article in English | MEDLINE | ID: covidwho-1931433


Dehydration of the upper airways increases risks of respiratory diseases from COVID-19 to asthma and COPD. We find in human volunteer studies involving 464 human subjects in Germany, the US, and India that respiratory droplet generation increases by up to 4 orders of magnitude in dehydration-associated states of advanced age (n = 357), elevated BMI-age (n = 148), strenuous exercise (n = 20) and SARS-CoV-2 infection (n = 87), and falls with hydration of the nose, larynx and trachea by calcium-rich hypertonic salts. We also find in a protocol of exercise-induced airway dehydration that hydration of the airways by calcium-rich salts increases oxygenation relative to a non-treatment control (P < 0.05). In a random control study of COVID-19 positive subjects (n = 40), thrice-a-day delivery of the calcium-rich hypertonic salts (active) suppressed respiratory droplet generation by 51% ± 11% and increased oxygen saturation over three days of treatment by 48.08% ± 9.61% (P < 0.001), while no changes were observed in the nasal-saline control group. Self-reported symptoms significantly declined in the active group and did not decline in the control group. Hydration of the upper airways appears promising as a non-drug approach for reducing risks of respiratory diseases such as COVID-19.

COVID-19 , Larynx , Exercise , Humans , SARS-CoV-2 , Trachea
Molecular Frontiers Journal ; 5(1n02), 2021.
Article in English | ProQuest Central | ID: covidwho-1752914


Dry air alters salt and water balance in the upper airways and increases the risks of COVID-19 among other respiratory diseases. We explored whether such upper airway variations in salt and water balance might alter respiratory droplet generation and potentially contribute to observed impacts of airway hydration on respiratory disease. In a randomized 4-arm study of 21 healthy human subjects we found that the breathing of humid air, the wearing of cotton masks, and the delivery of (sodium, calcium, and magnesium chloride) salt droplets sized to deposit in the nose, trachea, and main bronchi similarly reduce the exhalation of respiratory droplets by approximately 50% (P < 0.05) within 10 minutes following hydration. Respiratory droplet generation returns to relatively high baseline levels within 60–90 minutes on return to dry air in all cases other than on exposure to divalent (calcium and magnesium) salts, where suppression continues for 4–5 hours. We also found via a preliminary ecological regression analysis of COVID-19 cases in the United States between January 2020 and March 2021 that exposure to elevated airborne salt on (Gulf and Pacific) US coastlines appears to suppress by approximately 25%–30% (P < 0.05) COVID-19 incidence and deaths per capita relative to inland counties — accounting for ten potential confounding environmental, physiological, and behavioral variables including humidity. We conclude that the hydration of the upper airways by exposure to humidity, the wearing of masks, or the breathing of airborne salts that deposit in the upper airways diminish respiratory droplet generation and may reduce the risks of COVID-19 incidence and symptoms.

Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1310839
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: covidwho-1075324


COVID-19 transmits by droplets generated from surfaces of airway mucus during processes of respiration within hosts infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. We studied respiratory droplet generation and exhalation in human and nonhuman primate subjects with and without COVID-19 infection to explore whether SARS-CoV-2 infection, and other changes in physiological state, translate into observable evolution of numbers and sizes of exhaled respiratory droplets in healthy and diseased subjects. In our observational cohort study of the exhaled breath particles of 194 healthy human subjects, and in our experimental infection study of eight nonhuman primates infected, by aerosol, with SARS-CoV-2, we found that exhaled aerosol particles vary between subjects by three orders of magnitude, with exhaled respiratory droplet number increasing with degree of COVID-19 infection and elevated BMI-years. We observed that 18% of human subjects (35) accounted for 80% of the exhaled bioaerosol of the group (194), reflecting a superspreader distribution of bioaerosol analogous to a classical 20:80 superspreader of infection distribution. These findings suggest that quantitative assessment and control of exhaled aerosol may be critical to slowing the airborne spread of COVID-19 in the absence of an effective and widely disseminated vaccine.

COVID-19/physiopathology , COVID-19/transmission , Exhalation/physiology , Obesity/physiopathology , Aerosols , Age Factors , Animals , Body Mass Index , COVID-19/epidemiology , COVID-19/virology , Cohort Studies , Humans , Mucus/chemistry , Mucus/virology , Obesity/epidemiology , Obesity/virology , Particle Size , Primates , Respiratory System/metabolism , SARS-CoV-2/isolation & purification , Viral Load