Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-333740


New SARS-CoV-2 variants that have accumulated multiple mutations in the spike (S) glycoprotein enable increased transmission and resistance to neutralizing antibodies. Here, we study the antigenic and structural impacts of the S protein mutations from four variants, one that was involved in transmission between minks and humans, and three that rapidly spread in human populations and originated in the United Kingdom, Brazil or South Africa. All variants either retained or improved binding to the ACE2 receptor. The B.1.1.7 (UK) and B.1.1.28 (Brazil) spike variants showed reduced binding to neutralizing NTD and RBD antibodies, respectively, while the B.1.351 (SA) variant showed reduced binding to both NTD- and RBD-directed antibodies. Cryo-EM structural analyses revealed allosteric effects of the mutations on spike conformations and revealed mechanistic differences that either drive inter-species transmission or promotes viral escape from dominant neutralizing epitopes. HIGHLIGHTS: Cryo-EM structures reveal changes in SARS-CoV-2 S protein during inter-species transmission or immune evasion.Adaptation to mink resulted in increased ACE2 binding and spike destabilization.B.1.1.7 S mutations reveal an intricate balance of stabilizing and destabilizing effects that impact receptor and antibody binding.E484K mutation in B.1.351 and B.1.1.28 S proteins drives immune evasion by altering RBD conformation.S protein uses different mechanisms to converge upon similar solutions for altering RBD up/down positioning.

PubMed; 2020.
Preprint in English | PubMed | ID: ppcovidwho-333537


The COVID-19 pandemic caused by SARS-CoV-2 has escalated into a global crisis. The spike (S) protein that mediates cell entry and membrane fusion is the current focus of vaccine and therapeutic antibody development efforts. The S protein, like many other viral fusion proteins such as HIV-1 envelope (Env) and influenza hemagglutinin, is glycosylated with both complex and high mannose glycans. Here we demonstrate binding to the SARS-CoV-2 S protein by a category of Fab-dimerized glycan-reactive (FDG) HIV-1-induced broadly neutralizing antibodies (bnAbs). A 3.1 A resolution cryo-EM structure of the S protein ectodomain bound to glycan-dependent HIV-1 bnAb 2G12 revealed a quaternary glycan epitope on the spike S2 domain involving multiple protomers. These data reveal a new epitope on the SARS-CoV-2 spike that can be targeted for vaccine design. HIGHLIGHTS: Fab-dimerized, glycan-reactive (FDG) HIV-1 bnAbs cross-react with SARS-CoV-2 spike.3.1 A resolution cryo-EM structure reveals quaternary S2 epitope for HIV-1 bnAb 2G12.2G12 targets glycans, at positions 709, 717 and 801, in the SARS-CoV-2 spike.Our studies suggest a common epitope for FDG antibodies centered around glycan 709.

Cell ; 184(11): 2955-2972.e25, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1237636


Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.

Antibodies, Neutralizing/immunology , HIV-1/immunology , Immunoglobulin Fab Fragments/immunology , Polysaccharides/immunology , SARS-CoV-2/immunology , Simian Immunodeficiency Virus/immunology , Spike Glycoprotein, Coronavirus/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Dimerization , Epitopes/immunology , Glycosylation , HIV Antibodies/immunology , HIV Infections/immunology , Humans , Immunoglobulin Fab Fragments/chemistry , Macaca mulatta , Polysaccharides/chemistry , Receptors, Antigen, B-Cell/chemistry , Simian Immunodeficiency Virus/genetics , Vaccines/immunology , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics