Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22272691

ABSTRACT

The BA.1 sub-lineage of the Omicron (B.1.1.529) variant, first detected in the UK in mid-November 2021, rapidly became the dominant strain partly due to reduced vaccine effectiveness. An increase in a second Omicron sub-lineage BA.2 was observed in early January 2022. In this study we use a test-negative case control study design to estimate vaccine effectiveness against symptomatic disease with BA.1 and BA.2 after one or two doses of BNT162b2, ChAdOx1-S or mRNA-1273, and after booster doses of BNT162b2 or mRNA-1273 during a period of co-circulation. Overall, there was no evidence that vaccine effectiveness against symptomatic disease is reduced following infection with the BA.2 sub-lineage as compared to BA.1. Furthermore, similar rates of waning were observed after the second and booster dose for each sub-lineage. These data provide reassuring evidence of the effectiveness of the vaccines currently in use against symptomatic disease caused by BA.2.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-481609

ABSTRACT

The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organisation (WHO) as Alpha. Originating in early Autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is more typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK, and the imposition of new restrictions, in particular the English national lockdown in November 2020. While these interventions succeeded in reducing the absolute number of cases, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of the SARS-CoV-2 lineages which preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically-infected individual. We conclude that the last hypothesis provides the best explanation of the observed behaviour and dynamics of the variant, although we find that the individual need not be immunocompromised, as persistently-infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs to each other, and identify that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations, and its lack of rapid evolutionary rate on the ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms) it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21267615

ABSTRACT

BackgroundA rapid increase in cases due to the SARS-CoV-2 Omicron (B.1.1.529) variant in highly vaccinated populations has raised concerns about the effectiveness of current vaccines. MethodsWe used a test-negative case-control design to estimate vaccine effectiveness (VE) against symptomatic disease caused by the Omicron and Delta variants in England. VE was calculated after primary immunisation with two BNT162b2 or ChAdOx1 doses, and at 2+ weeks following a BNT162b2 booster. ResultsBetween 27 November and 06 December 2021, 581 and 56,439 eligible Omicron and Delta cases respectively were identified. There were 130,867 eligible test-negative controls. There was no effect against Omicron from 15 weeks after two ChAdOx1 doses, while VE after two BNT162b2 doses was 88.0% (95%CI: 65.9 to 95.8%) 2-9 weeks after dose 2, dropping to between 34 and 37% from 15 weeks post dose 2.From two weeks after a BNT162b2 booster, VE increased to 71.4% (95%CI: 41.8 to 86.0%) for ChAdOx1 primary course recipients and 75.5% (95%CI: 56.1 to 86.3%) for BNT162b2 primary course recipients. For cases with Delta, VE was 41.8% (95%CI: 39.4-44.1%) at 25+ weeks after two ChAdOx1 doses, increasing to 93.8% (95%CI: 93.2-94.3%) after a BNT162b2 booster. With a BNT162b2 primary course, VE was 63.5% (95%CI: 61.4 to 65.5%) 25+ weeks after dose 2, increasing to 92.6% (95%CI: 92.0-93.1%) two weeks after the booster. ConclusionsPrimary immunisation with two BNT162b2 or ChAdOx1 doses provided no or limited protection against symptomatic disease with the Omicron variant. Boosting with BNT162b2 following either primary course significantly increased protection.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21263583

ABSTRACT

BackgroundCOVID-19 vaccines have been used for 9 months in the UK. Real world data have demonstrated the vaccines to be highly effective against COVID-19, severe disease and death. Here, we estimate vaccine effectiveness over time since the second dose of Comirnaty, Vaxzevria and Spikevax in England. MethodsWe used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease, hospitalisation and mortality by age, comorbidity status and over time after the second dose to investigate waning separately for Alpha and Delta variants. ResultsVaccine effectiveness against symptomatic disease peaked in the early weeks after the second dose and then fell to 47.3 (95% CI 45 to 49.6) and 69.7 (95% CI 68.7 to 70.5) by 20+ weeks against the Delta variant for Vaxzevria and Comirnaty, respectively. Waning of vaccine effectiveness was greater for 65+ year-olds compared to 40-64 year-olds. Vaccine effectiveness fell less against hospitalisations to 77.0 (70.3 to 82.3) and 92.7 (90.3 to 94.6) beyond 20 weeks post-vaccination and 78.7 (95% CI 52.7 to 90.4) and 90.4 (95% CI 85.1 to 93.8) against death for Vaxzevria and Comirnaty, respectively. Greater waning was observed among 65+ year-olds in a clinically extremely vulnerable group and 40-64-year olds with underlying medical conditions compared to healthy adults. ConclusionsWe observed limited waning in vaccine effectiveness against hospitalisation and death more than 20 weeks post-vaccination with Vaxzevria or Comirnaty. Waning was greater in older adults and those in a clinical risk group, suggesting that these individuals should be prioritised for booster doses.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21257658

ABSTRACT

BackgroundThe B.1.617.2 COVID-19 variant has contributed to the surge in cases in India and has now been detected across the globe, including a notable increase in cases in the UK. We estimate the effectiveness of the BNT162b2 and ChAdOx1 COVID-19 vaccines against this variant. MethodsA test negative case control design was used to estimate the effectiveness of vaccination against symptomatic disease with both variants over the period that B.1.617.2 began circulating with cases identified based on sequencing and S-gene target status. Data on all symptomatic sequenced cases of COVID-19 in England was used to estimate the proportion of cases with B.1.617.2 compared to the predominant strain (B.1.1.7) by vaccination status. ResultsEffectiveness was notably lower after 1 dose of vaccine with B.1.617.2 cases 33.5% (95%CI: 20.6 to 44.3) compared to B.1.1.7 cases 51.1% (95%CI: 47.3 to 54.7) with similar results for both vaccines. With BNT162b2 2 dose effectiveness reduced from 93.4% (95%CI: 90.4 to 95.5) with B.1.1.7 to 87.9% (95%CI: 78.2 to 93.2) with B.1.617.2. With ChAdOx1 2 dose effectiveness reduced from 66.1% (95% CI: 54.0 to 75.0) with B.1.1.7 to 59.8% (95%CI: 28.9 to 77.3) with B.1.617.2. Sequenced cases detected after 1 or 2 doses of vaccination had a higher odds of infection with B.1.617.2 compared to unvaccinated cases (OR 1.40; 95%CI: 1.13-1.75). ConclusionsAfter 2 doses of either vaccine there were only modest differences in vaccine effectiveness with the B.1.617.2 variant. Absolute differences in vaccine effectiveness were more marked with dose 1. This would support maximising vaccine uptake with two doses among vulnerable groups.

SELECTION OF CITATIONS
SEARCH DETAIL