Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Viruses ; 14(6)2022 05 27.
Article in English | MEDLINE | ID: covidwho-1869821

ABSTRACT

Herein, we provide results from a prospective population-based longitudinal follow-up (FU) SARS-CoV-2 serosurveillance study in Tirschenreuth, the county which was hit hardest in Germany in spring 2020 and early 2021. Of 4203 individuals aged 14 years or older enrolled at baseline (BL, June 2020), 3546 participated at FU1 (November 2020) and 3391 at FU2 (April 2021). Key metrics comprising standardized seroprevalence, surveillance detection ratio (SDR), infection fatality ratio (IFR) and success of the vaccination campaign were derived using the Roche N- and S-Elecsys anti-SARS-CoV-2 test together with a self-administered questionnaire. N-seropositivity at BL was 9.2% (1st wave). While we observed a low new seropositivity between BL and FU1 (0.9%), the combined 2nd and 3rd wave accounted for 6.1% new N-seropositives between FU1 and FU2 (ever seropositives at FU2: 15.4%). The SDR decreased from 5.4 (BL) to 1.1 (FU2) highlighting the success of massively increased testing in the population. The IFR based on a combination of serology and registration data resulted in 3.3% between November 2020 and April 2021 compared to 2.3% until June 2020. Although IFRs were consistently higher at FU2 compared to BL across age-groups, highest among individuals aged 70+ (18.3% versus 10.7%, respectively), observed differences were within statistical uncertainty bounds. While municipalities with senior care homes showed a higher IFR at BL (3.0% with senior care home vs. 0.7% w/o), this effect diminished at FU2 (3.4% vs. 2.9%). In April 2021 (FU2), vaccination rate in the elderly was high (>77.4%, age-group 80+).


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Germany/epidemiology , Humans , Longitudinal Studies , Prospective Studies , Seroepidemiologic Studies
2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1755572

ABSTRACT

The rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. Using pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.1.298, variants of interest (VOI) B.1.617.1 (Kappa), and four VOCs, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), including the B.1.617.2 K417N, informally known as Delta Plus. We utilised the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin to report neutralisation antibody levels in International Units per mL. Our data demonstrate a significant reduction in the ability of first wave convalescent sera to neutralise the VOCs. Patients and HCWs with more severe COVID-19 were found to have higher antibody titres and to neutralise the VOCs more effectively than individuals with milder symptoms. Using an estimated threshold for 50% protection, 54 IU/mL, we found most asymptomatic and mild cases did not produce titres above this threshold.

3.
Vaccines (Basel) ; 10(2)2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1702407

ABSTRACT

To assess vaccine immunogenicity in non-infected and previously infected individuals in a real-world scenario, SARS-CoV-2 antibody responses were determined during follow-up 2 (April 2021) of the population-based Tirschenreuth COVID-19 cohort study comprising 3378 inhabitants of the Tirschenreuth county aged 14 years or older. Seronegative participants vaccinated once with Vaxzevria, Comirnaty, or Spikevax had median neutralizing antibody titers ranging from ID50 = 25 to 75. Individuals with two immunizations with Comirnaty or Spikevax had higher median ID50s (of 253 and 554, respectively). Regression analysis indicated that both increased age and increased time since vaccination independently decreased RBD binding and neutralizing antibody levels. Unvaccinated participants with detectable N-antibodies at baseline (June 2020) revealed a median ID50 of 72 at the April 2021 follow-up. Previously infected participants that received one dose of Vaxzevria or Comirnaty had median ID50 to 929 and 2502, respectively. Individuals with a second dose of Comirnaty given in a three-week interval after the first dose did not have higher median antibody levels than individuals with one dose. Prior infection also primed for high systemic IgA levels in response to one dose of Comirnaty that exceeded IgA levels observed after two doses of Comirnaty in previously uninfected participants. Neutralizing antibody levels targeting the spike protein of Beta and Delta variants were diminished compared to the wild type in vaccinated and infected participants.

4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-314910

ABSTRACT

Background: Children are affected rather mildly by the acute phase of COVID-19, but predominantly in children and youths, the potentially severe and life threatening pediatric multiorgan immune syndrome (PMIS) occurs later on. To identify children at risk early on, we searched for antibodies against SARS-CoV-2 and searched for early and mild symptoms of PMIS in those with high levels of antibodies. Methods: In a cross-sectional design, children aged 1-17 were recruited through primary care pediatricians for the study (a), if they had an appointment for a regular health check-up or (b), or if parents and children volunteered to participate in the study. Two antibody tests were performed in parallel and children with antibody levels >97th percentile (in the commercially available test) were screened for signs and symptoms of PMIS and SARS-CoV-2 neutralization tests were performed. Results: We identified antibodies against SARS-CoV-2 in 162 of 2832 eligible children (5.7%) between June and July 2020 in three, in part strongly affected regions of Bavaria. Approximately 60% of antibody positive children showed high levels of antibodies. In those who participated in the follow up screening, 30% showed some mild and minor symptoms similar to Kawasaki disease and in three children, cardiac and neuropsychological symptoms were identified. Symptoms correlated with high levels of non-neutralizing and concomitantly low levels of neutralizing antibodies and lower neutralizing capacity. Conclusions: Children exposed to SARS-CoV-2 should be screened for antibodies and those children with positive antibody responses should undergo a stepwise assessment for late COVID-19 effects.

5.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294368

ABSTRACT

Background The rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. Methods Using pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.1.298, variants of interest (VOI) B.1.617.1 (Kappa), and four VOCs, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), including the B.1.617.2 K417N, informally known as Delta Plus. We utilised the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin to report neutralisation antibody levels in International Units per mL. Findings Our data demonstrate a significant reduction in the ability of first wave convalescent sera to neutralise the VOCs. Patients and HCWs with more severe COVID-19 were found to have higher antibody titres and to neutralise the VOCs more effectively than individuals with milder symptoms. Using an estimated threshold for 50% protection, 54 IU/mL, we found most asymptomatic and mild cases did not produce titres above this threshold. Interpretation Expressing our data in IU/ml, we provide a benchmark pre-vaccine standardised dataset that compares disease severity with neutralising antibody titres. Our data may now be compared across multiple laboratories. The continued use and aggregation of standardised data will eventually assist in defining correlates of protection. Funding UKRI and NIHR;grant number G107217 Research in context Evidence before this study During the first wave outbreak, much focus was placed on the role of neutralising antibodies and titres generated upon infection to ancestral SARS-CoV-2. Due to the large amounts of different assays used to elucidate the antibody-mediated immunity and laboratory to laboratory, large amounts of invaluable data could not be directly compared in order to define a correlate of protection, due to variability in the results. The WHO International Standard for anti-SARS-CoV-2 Immunoglobulin sera was made in order to standardise future data so that comparisons may take place. Added value of this study Our study compares the neutralisation capacity of sera from patients and healthcare workers (HCWs) from the ancestral strain of SARS-CoV-2 against new variants, including the current variants of concern in circulation. We also provide data in International Units per mL, a standardised unitage, for infected individuals that have a clinical severity score, allowing us to assess levels of neutralising antibodies across different severities of COVID-19 disease. By providing a method to calibrate most of the variants of concern so that the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin reagent could be used to standardise our results, therefore making them comparable to other laboratories who also standardised their data in an identical manner. Implications of all the available evidence Continual use and accumulation of standardised data would eventually lead to defining the correlates of protection against SARS-CoV-2. This could help to inform medical staff to identify which individuals would be a greater risk of a potential reinfection to SARS-CoV-2.

6.
Front Pediatr ; 9: 678937, 2021.
Article in English | MEDLINE | ID: covidwho-1477849

ABSTRACT

Background: Children and youth are affected rather mildly in the acute phase of COVID-19 and thus, SARS-CoV-2 infection infection may easily be overlooked. In the light of current discussions on the vaccinations of children it seems necessary to better identify children who are immune against SARS-CoV-2 due to a previous infection and to better understand COVID-19 related immune reactions in children. Methods: In a cross-sectional design, children aged 1-17 were recruited through primary care pediatricians for the study (a) randomly, if they had an appointment for a regular health check-up or (b) if parents and children volunteered and actively wanted to participate in the study. Symptoms were recorded and two antibody tests were performed in parallel directed against S (in house test) and N (Roche Elecsys) viral proteins. In children with antibody response in either test, neutralization activity was determined. Results: We identified antibodies against SARS-CoV-2 in 162 of 2,832 eligible children (5.7%) between end of May and end of July 2020 in three, in part strongly affected regions of Bavaria in the first wave of the pandemic. Approximately 60% of antibody positive children (n = 97) showed high levels (>97th percentile) of antibodies against N-protein, and for the S-protein, similar results were found. Sufficient neutralizing activity was detected for only 135 antibody positive children (86%), irrespective of age and sex. Initial COVID-19 symptoms were unspecific in children except for the loss of smell and taste and unrelated to antibody responses or neutralization capacity. Approximately 30% of PCR positive children did not show seroconversion in our small subsample in which PCR tests were performed. Conclusions: Symptoms of SARS-CoV-2 infections are unspecific in children and antibody responses show a dichotomous structure with strong responses in many and no detectable antibodies in PCR positive children and missing neutralization activity in a relevant proportion of the young population.

7.
Diagnostics (Basel) ; 11(10)2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-1463578

ABSTRACT

Antibody testing for determining the SARS-CoV-2 serostatus was rapidly introduced in early 2020 and since then has been gaining special emphasis regarding correlates of protection. With limited access to representative samples with known SARS-CoV-2 infection status during the initial period of test development and validation, spectrum bias has to be considered when moving from a "test establishment setting" to population-based settings, in which antibody testing is currently implemented. To provide insights into the presence and magnitude of spectrum bias and to estimate performance measures of antibody testing in a population-based environment, we compared SARS-CoV-2 neutralization to a battery of serological tests and latent class analyses (LCA) in a subgroup (n = 856) of the larger population based TiKoCo-19 cohort (n = 4185). Regarding spectrum bias, we could proof notable differences in test sensitivities and specificities when moving to a population-based setting, with larger effects visible in earlier registered tests. While in the population-based setting the two Roche ELECSYS anti-SARS-CoV-2 tests outperformed every other test and even LCA regarding sensitivity and specificity in dichotomous testing, they didn't provide satisfying quantitative correlation with neutralization capacity. In contrast, our in-house anti SARS-CoV-2-Spike receptor binding domain (RBD) IgG-ELISA (enzyme-linked-immunosorbant assay) though inferior in dichotomous testing, provided satisfactory quantitative correlation and may thus represent a better correlate of protection. In summary, all tests, led by the two Roche tests, provided sufficient accuracy for dichotomous identification of neutralizing sera, with increasing spectrum bias visible in earlier registered tests, while the majority of tests, except the RBD-ELISA, didn't provide satisfactory quantitative correlations.

8.
Vaccines (Basel) ; 9(10)2021 Sep 27.
Article in English | MEDLINE | ID: covidwho-1438768

ABSTRACT

It is not clear whether there is an association between adverse reactions and immune response after vaccination. Seven hundred and thirty-five vaccinees from our University Medical Center vaccination clinic provided information about sex, age and adverse reactions after first and second vaccination with BNT162b2. Adverse reactions were categorized into three groups: no or minor on the injection side, moderate (not further classified) and severe-defined as any symptom(s) resulting in sick leave. We chose 38 vaccinees with the most severe adverse reactions and compared their humoral and T-cell-mediated immune responses after second vaccination with those of 38 sex and age matched controls without or only minor injection-side related adverse reactions. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) anti-receptor binding domain (RBD) IgG titers were detectable in all participants (median 5528; range 958-26,285). Men with severe adverse reactions had 1.5-fold higher median SARS-CoV-2 RBD IgG titers compared to men without adverse reactions (median 7406 versus 4793; p < 0.001). Similarly; neutralization activity was significantly higher in men with severe adverse reactions (half maximal inhibitory concentrations (IC50) median 769 versus 485; p < 0.001). Reactogenicity did not influence humoral immune response in women nor T-cell-mediated immune response in any sex. To conclude; adverse reactions after vaccination with BNT162b2 do influence humoral immune response yet only in men and are not a prerequisite for a robust antibody response.

9.
Viruses ; 13(8)2021 08 10.
Article in English | MEDLINE | ID: covidwho-1348697

ABSTRACT

The novel coronavirus SARS-CoV-2 is the seventh identified human coronavirus. Understanding the extent of pre-existing immunity induced by seropositivity to endemic seasonal coronaviruses and the impact of cross-reactivity on COVID-19 disease progression remains a key research question in immunity to SARS-CoV-2 and the immunopathology of COVID-2019 disease. This paper describes a panel of lentiviral pseudotypes bearing the spike (S) proteins for each of the seven human coronaviruses (HCoVs), generated under similar conditions optimized for high titre production allowing a high-throughput investigation of antibody neutralization breadth. Optimal production conditions and most readily available permissive target cell lines were determined for spike-mediated entry by each HCoV pseudotype: SARS-CoV-1, SARS-CoV-2 and HCoV-NL63 best transduced HEK293T/17 cells transfected with ACE2 and TMPRSS2, HCoV-229E and MERS-CoV preferentially entered HUH7 cells, and CHO cells were most permissive for the seasonal betacoronavirus HCoV-HKU1. Entry of ACE2 using pseudotypes was enhanced by ACE2 and TMPRSS2 expression in target cells, whilst TMPRSS2 transfection rendered HEK293T/17 cells permissive for HCoV-HKU1 and HCoV-OC43 entry. Additionally, pseudotype viruses were produced bearing additional coronavirus surface proteins, including the SARS-CoV-2 Envelope (E) and Membrane (M) proteins and HCoV-OC43/HCoV-HKU1 Haemagglutinin-Esterase (HE) proteins. This panel of lentiviral pseudotypes provides a safe, rapidly quantifiable and high-throughput tool for serological comparison of pan-coronavirus neutralizing responses; this can be used to elucidate antibody dynamics against individual coronaviruses and the effects of antibody cross-reactivity on clinical outcome following natural infection or vaccination.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/blood , Broadly Neutralizing Antibodies/blood , Cell Line , Coronavirus 229E, Human/immunology , Coronavirus 229E, Human/physiology , Coronavirus NL63, Human/immunology , Coronavirus NL63, Human/physiology , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/physiology , Cross Reactions , Humans , Lentivirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Neutralization Tests , Plasmids , SARS-CoV-2/physiology , Transfection , Virus Internalization
10.
J Virol ; 95(15): e0020321, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1305505

ABSTRACT

The majority of SARS-CoV-2 vaccines in use or advanced development are based on the viral spike protein (S) as their immunogen. S is present on virions as prefusion trimers in which the receptor binding domain (RBD) is stochastically open or closed. Neutralizing antibodies have been described against both open and closed conformations. The long-term success of vaccination strategies depends upon inducing antibodies that provide long-lasting broad immunity against evolving SARS-CoV-2 strains. Here, we have assessed the results of immunization in a mouse model using an S protein trimer stabilized in the closed state to prevent full exposure of the receptor binding site and therefore interaction with the receptor. We compared this with other modified S protein constructs, including representatives used in current vaccines. We found that all trimeric S proteins induced a T cell response and long-lived, strongly neutralizing antibody responses against 2019 SARS-CoV-2 and variants of concern P.1 and B.1.351. Notably, the protein binding properties of sera induced by the closed spike differed from those induced by standard S protein constructs. Closed S proteins induced more potent neutralizing responses than expected based on the degree to which they inhibit interactions between the RBD and ACE2. These observations suggest that closed spikes recruit different, but equally potent, immune responses than open spikes and that this is likely to include neutralizing antibodies against conformational epitopes present in the closed conformation. We suggest that closed spikes, together with their improved stability and storage properties, may be a valuable component of refined, next-generation vaccines. IMPORTANCE Vaccines in use against SARS-CoV-2 induce immune responses against the spike protein. There is intense interest in whether the antibody response induced by vaccines will be robust against new variants, as well as in next-generation vaccines for use in previously infected or immunized individuals. We assessed the use as an immunogen of a spike protein engineered to be conformationally stabilized in the closed state where the receptor binding site is occluded. Despite occlusion of the receptor binding site, the spike induces potently neutralizing sera against multiple SARS-CoV-2 variants. Antibodies are raised against a different pattern of epitopes to those induced by other spike constructs, preferring conformational epitopes present in the closed conformation. Closed spikes, or mRNA vaccines based on their sequence, can be a valuable component of next-generation vaccines.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Epitopes/chemistry , Epitopes/immunology , HEK293 Cells , Humans , Mice , Protein Stability , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
12.
Viruses ; 13(6)2021 06 10.
Article in English | MEDLINE | ID: covidwho-1264531

ABSTRACT

SARS-CoV-2 infection fatality ratios (IFR) remain controversially discussed with implications for political measures. The German county of Tirschenreuth suffered a severe SARS-CoV-2 outbreak in spring 2020, with particularly high case fatality ratio (CFR). To estimate seroprevalence, underreported infections, and IFR for the Tirschenreuth population aged ≥14 years in June/July 2020, we conducted a population-based study including home visits for the elderly, and analyzed 4203 participants for SARS-CoV-2 antibodies via three antibody tests. Latent class analysis yielded 8.6% standardized county-wide seroprevalence, a factor of underreported infections of 5.0, and 2.5% overall IFR. Seroprevalence was two-fold higher among medical workers and one third among current smokers with similar proportions of registered infections. While seroprevalence did not show an age-trend, the factor of underreported infections was 12.2 in the young versus 1.7 for ≥85-year-old. Age-specific IFRs were <0.5% below 60 years of age, 1.0% for age 60-69, and 13.2% for age 70+. Senior care homes accounted for 45% of COVID-19-related deaths, reflected by an IFR of 7.5% among individuals aged 70+ and an overall IFR of 1.4% when excluding senior care home residents from our computation. Our data underscore senior care home infections as key determinant of IFR additionally to age, insufficient targeted testing in the young, and the need for further investigations on behavioral or molecular causes of the fewer infections among current smokers.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/mortality , Population Surveillance/methods , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/immunology , Female , Germany/epidemiology , Humans , Latent Class Analysis , Male , Middle Aged , Prospective Studies , Seasons , Seroepidemiologic Studies , Surveys and Questionnaires , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL