Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Database
Language
Document Type
Year range
1.
Plants (Basel) ; 11(15)2022 Jul 24.
Article in English | MEDLINE | ID: covidwho-1957415

ABSTRACT

Since the emergence of the pandemic of the coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the discovery of antiviral phytoconstituents from medicinal plants against SARS-CoV-2 has been comprehensively researched. In this study, thirty-three plants belonging to seventeen different families used traditionally in Saudi Arabia were tested in vitro for their ability to inhibit the SARS-CoV-2 main protease (MPRO). Major constituents of the bio-active extracts were isolated and tested for their inhibition potential against this enzyme; in addition, their antiviral activity against the SARS-CoV-2 Egyptian strain was assessed. Further, the thermodynamic stability of the best active compounds was studied through focused comparative insights for the active metabolites regarding ligand-target binding characteristics at the molecular level. Additionally, the obtained computational findings provided useful directions for future drug optimization and development. The results revealed that Psiadia punctulata, Aframomum melegueta, and Nigella sativa extracts showed a high percentage of inhibition of 66.4, 58.7, and 31.5%, against SARS-CoV-2 MPRO, respectively. The major isolated constituents of these plants were identified as gardenins A and B (from P. punctulata), 6-gingerol and 6-paradol (from A. melegueta), and thymoquinone (from N. sativa). These compounds are the first to be tested invitro against SARS-CoV-2 MPRO. Among the isolated compounds, only thymoquinone (THY), gardenin A (GDA), 6-gingerol (GNG), and 6-paradol (PAD) inhibited the SARS-CoV-2 MPRO enzyme with inhibition percentages of 63.21, 73.80, 65.2, and 71.8%, respectively. In vitro assessment of SARS-CoV-2 (hCoV-19/Egypt/NRC-03/2020 (accession number on GSAID: EPI_ISL_430820) revealed a strong-to-low antiviral activity of the isolated compounds. THY showed relatively high cytotoxicity and was anti-SARS-CoV-2, while PAD demonstrated a cytotoxic effect on the tested VERO cells with a selectivity index of CC50/IC50 = 1.33 and CC50/IC50 = 0.6, respectively. Moreover, GNG had moderate activity at non-cytotoxic concentrations in vitro with a selectivity index of CC50/IC50 = 101.3/43.45 = 2.3. Meanwhile, GDA showed weak activity with a selectivity index of CC50/IC50 = 246.5/83.77 = 2.9. The thermodynamic stability of top-active compounds revealed preferential stability and SARS-CoV-2 MPRO binding affinity for PAD through molecular-docking-coupled molecular dynamics simulation. The obtained results suggest the treating potential of these plants and/or their active metabolites for COVID-19. However, further in-vivo and clinical investigations are required to establish the potential preventive and treatment effectiveness of these plants and/or their bio-active compounds in COVID-19.

2.
J Tradit Complement Med ; 12(1): 16-34, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1814842

ABSTRACT

BACKGROUND AND AIM: The discovery of drugs capable of inhibiting SARS-CoV-2 is a priority for human beings due to the severity of the global health pandemic caused by COVID-19. To this end, natural products can provide therapeutic alternatives that could be employed as an effective safe treatment for COVID-19. EXPERIMENTAL PROCEDURE: Twelve compounds were isolated from the aerial parts of C. officinalis L. and investigated for their inhibitory activities against SARS-CoV-2 Mpro compared to its co-crystallized N3 inhibitor using molecular docking studies. Furthermore, a 100 ns MD simulation was performed for the most active two promising compounds, Calendulaglycoside A (SAP5) and Osteosaponin-I (SAP8). RESULTS AND CONCLUSION: At first, molecular docking studies showed interesting binding scores as compared to the N3 inhibitor. Calendulaglycoside A (SAP5) achieved a superior binding than the co-crystallized inhibitor indicating promising affinity and intrinsic activity towards the Mpro of SARS-CoV-2 as well. Moreover, findings illustrated preferential stability for SAP5 within the Mpro pocket over that of N3 beyond the 40 ns MD simulation course. Structural preferentiality for triterpene-Mpro binding highlights the significant role of 17ß-glucosyl and carboxylic 3α-galactosyl I moieties through high electrostatic interactions across the MD simulation trajectories. Furthermore, this study clarified a promising SAR responsible for the antiviral activity against the SARS-CoV-2 Mpro and the design of new drug candidates targeting it as well. The above findings could be promising for fast examining the previously isolated triterpenes both pre-clinically and clinically for the treatment of COVID-19.

3.
Metabolites ; 11(12)2021 Nov 29.
Article in English | MEDLINE | ID: covidwho-1542668

ABSTRACT

Coronavirus disease 2019 (COVID-19) is the disease caused by the virus SARS-CoV-2 responsible for the ongoing pandemic which has claimed the lives of millions of people. This has prompted the scientific research community to act to find treatments against the SARS-CoV-2 virus that include safe antiviral medicinal compounds. The edible green algae U. lactuca. is known to exhibit diverse biological activities such as anti-influenza virus, anti-Japanese encephalitis virus, immunomodulatory, anticoagulant, antioxidant and antibacterial activities. Herein, four new ceramides in addition to two known ones were isolated from Ulva lactuca. The isolated ceramides, including Cer-1, Cer-2, Cer-3, Cer-4, Cer-5 and Cer-6 showed promising antiviral activity against SARS-CoV-2 when investigated using in silico approaches by preventing its attachment to human cells and/or inhibiting its viral replication. Cer-4 and Cer-5 were the most effective in inhibiting the human angiotensin converting enzyme (hACE)-spike protein complex which is essential for the virus to enter the human host. In addition to this, Cer-4 also showed an inhibition of the SARS-CoV-2 protease (Mpro) that is responsible for its viral replication and transcription. In this study, we also used liquid chromatography coupled to electrospray ionization high-resolution mass spectroscopy (LC-ESI-HRMS) to identify several metabolites of U. lactuca, including metabolites such as fatty acids, their glyceride derivatives, terpenoids, sterols and oxysterols from the organic extract. Some of these metabolites also possessed promising antiviral activity, as previously reported.

4.
RSC Adv ; 11(50): 31339-31363, 2021 Sep 21.
Article in English | MEDLINE | ID: covidwho-1517647

ABSTRACT

Since its first report in December 2019, the novel coronavirus virus, SARS-CoV-2, has caused an unprecedented global health crisis and economic loss imposing a tremendous burden on the worldwide finance, healthcare system, and even daily life. Even with the introduction of different preventive vaccines, there is still a dire need for effective antiviral therapeutics. Nature has been considered as the historical trove of drug discovery and development, particularly in cases of worldwide crises. Herein, a comprehensive in silico investigation of a highly focused chemical library of 34 pederin-structurally related marine compounds, belonging to four polyketides families, was initiated against the SARS-CoV-2 main protease, Mpro, being the key replicating element of the virus and main target in many drugs development programs. Two of the most potent SARS-CoV-2 Mpro co-crystallized inhibitors, O6K and N3, were added to the tested database as reference standards. Through molecular docking simulation, promising compounds including Pederin (1), Dihydro-onnamide A (11), Onnamide C (14), Pseudo-onnamide A (17), and Theopederin G (29) have been identified from different families based on their superior ligand-protein energies and relevant binding profiles with the key Mpro pocket residues. Thermodynamic behaviors of the identified compounds were investigated through 200 ns all-atom molecular dynamics simulation illustrating their significant stability and pocket accommodation. Furthermore, structural activity preferentiality was identified for the pederin-based marine compounds highlighting the importance of the terminal guanidine and cyclic hemiacetal linker, and the length of the sidechain. Our findings highlight the challenges of targeting SARS-CoV-2 Mpro as well as recommending further in vitro and in vivo studies regarding the examined marine products either alone or in combination paving the way for promising lead molecules.

5.
RSC Adv ; 11(56): 35536-35558, 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1510631

ABSTRACT

The global COVID-19 pandemic became more threatening especially after the introduction of the second and third waves with the current large expectations for a fourth one as well. This urged scientists to rapidly develop a new effective therapy to combat SARS-CoV-2. Based on the structures of ß-adrenergic blockers having the same hydroxyethylamine and hydroxyethylene moieties present in the HIV-1 protease inhibitors which were found previously to inhibit the replication of SARS-CoV, we suggested that they may decrease the SARS-CoV-2 entry into the host cell through their ability to decrease the activity of RAAS and ACE2 as well. Herein, molecular docking of twenty FDA-approved ß-blockers was performed targeting SARS-CoV-2 Mpro. Results showed promising inhibitory activities especially for Carvedilol (CAR) and Nebivolol (NEB) members. Moreover, these two drugs together with Bisoprolol (BIS) as an example from the lower active ones were subjected to molecular dynamics simulations at 100 ns. Great stability across the whole 100 ns timeframe was observed for the top docked ligands, CAR and NEB, over BIS. Conformational analysis of the examined drugs and hydrogen bond investigation with the pocket's crucial residues confirm the great affinity and confinement of CAR and NEB within the Mpro binding site. Moreover, the binding-free energy analysis and residue-wise contribution analysis highlight the nature of ligand-protein interaction and provide guidance for lead development and optimization. Furthermore, the examined three drugs were tested for their in vitro inhibitory activities towards SARS-CoV-2. It is worth mentioning that NEB achieved the most potential anti-SARS-CoV-2 activity with an IC50 value of 0.030 µg ml-1. Besides, CAR was found to have a promising inhibitory activity with an IC50 of 0.350 µg ml-1. Also, the IC50 value of BIS was found to be as low as 15.917 µg ml-1. Finally, the SARS-CoV-2 Mpro assay was performed to evaluate and confirm the inhibitory effects of the tested compounds (BIS, CAR, and NEB) towards the SARS-CoV-2 Mpro enzyme. The obtained results showed very promising SARS-CoV-2 Mpro inhibitory activities of BIS, CAR, and NEB (IC50 = 118.50, 204.60, and 60.20 µg ml-1, respectively) compared to lopinavir (IC50 = 73.68 µg ml-1) as a reference standard.

6.
Cells ; 10(11)2021 11 04.
Article in English | MEDLINE | ID: covidwho-1502369

ABSTRACT

During the current era of the COVID-19 pandemic, the dissemination of Mucorales has been reported globally, with elevated rates of infection in India, and because of the high rate of mortality and morbidity, designing an effective vaccine against mucormycosis is a major health priority, especially for immunocompromised patients. In the current study, we studied shared Mucorales proteins, which have been reported as virulence factors, and after analysis of several virulent proteins for their antigenicity and subcellular localization, we selected spore coat (CotH) and serine protease (SP) proteins as the targets of epitope mapping. The current study proposes a vaccine constructed based on top-ranking cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B cell lymphocyte (BCL) epitopes from filtered proteins. In addition to the selected epitopes, ß-defensins adjuvant and PADRE peptide were included in the constructed vaccine to improve the stimulated immune response. Computational tools were used to estimate the physicochemical and immunological features of the proposed vaccine and validate its binding with TLR-2, where the output data of these assessments potentiate the probability of the constructed vaccine to stimulate a specific immune response against mucormycosis. Here, we demonstrate the approach of potential vaccine construction and assessment through computational tools, and to the best of our knowledge, this is the first study of a proposed vaccine against mucormycosis based on the immunoinformatics approach.


Subject(s)
Fungal Vaccines/chemistry , Fungal Vaccines/immunology , Mucormycosis/prevention & control , Rhizopus/immunology , Adjuvants, Immunologic , Antigens, Fungal/immunology , Computational Biology , Cross Reactions , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Humans , Models, Molecular , Mucorales/immunology , Protein Conformation , Toll-Like Receptor 2/chemistry , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology
7.
Front Chem ; 9: 661230, 2021.
Article in English | MEDLINE | ID: covidwho-1238863

ABSTRACT

The rapid and global spread of a new human coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of COVID-19. Here, we consider drug repurposing as an attractive approach that can facilitate the drug discovery process by repurposing existing pharmaceuticals to treat illnesses other than their primary indications. We review current information concerning the global health issue of COVID-19 including promising approved drugs, e.g., human angiotensin-converting enzyme inhibitors (hACEIs). Besides, we describe computational approaches to be used in drug repurposing and highlight examples of in-silico studies of drug development efforts against SARS-CoV-2. Alacepril and lisinopril were found to interact with human angiotensin-converting enzyme 2 (hACE2), the host entranceway for SARS-CoV-2 spike protein, through exhibiting the most acceptable rmsd_refine values and the best binding affinity through forming a strong hydrogen bond with Asn90, which is assumed to be essential for the activity, as well as significant extra interactions with other receptor-binding residues. Furthermore, molecular dynamics (MD) simulations followed by calculation of the binding free energy were also carried out for the most promising two ligand-pocket complexes from docking studies (alacepril and lisinopril) to clarify some information on their thermodynamic and dynamic properties and confirm the docking results as well. These results we obtained probably provided an excellent lead candidate for the development of therapeutic drugs against COVID-19. Eventually, animal experiments and accurate clinical trials are needed to confirm the potential preventive and treatment effect of these compounds.

8.
Biology (Basel) ; 10(5)2021 May 01.
Article in English | MEDLINE | ID: covidwho-1223939

ABSTRACT

Presently, the world is under the toll of pandemic coronavirus disease-2019 (COVID-19) outbreak caused by SARS-CoV-2. Lack of effective and safe therapeutics has stressed the scientific community for developing novel therapeutics capable of alleviating and stopping this pandemic. Within the presented study, molecular docking, ADME properties and all-atom molecular dynamic (MD) simulation, along with two standard antiviral agents (lopinavir and benzopurpurin-4B), were applied to investigate 15 scalaranes sesterterpenes natural compounds, purified from the Red Sea marine sponge Hyrtios erectus, as potential COVID-19 dual-target inhibitors. Following multi-step docking within COVID-19 main protease and Nsp15 endoribonuclease cavities, nine promising drug-like compounds exhibited higher docking scores as well as better interactions with the target's crucial residues than those of reference ligands. Compounds 2, 6, 11, and 15, were predicted to simultaneously subdue the activity of the two COVID-19 targets. Dynamics behavior of the best-docked molecules, compounds 15 and 6, within COVID-19 target pockets showed substantial stability of ligand-protein complexes as presented via several MD simulation parameters. Furthermore, calculated free-binding energies from MD simulation illustrated significant ligand's binding affinity towards respective target pockets. All provided findings supported the utility of scalarane-based sesterterpenes, particularly compounds 15 and 6, as promising lead candidates guiding the development of effective therapeutics against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL