Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
Nat Commun ; 14(1): 3334, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-20241659


COVID-19 patients at risk of severe disease may be treated with neutralising monoclonal antibodies (mAbs). To minimise virus escape from neutralisation these are administered as combinations e.g. casirivimab+imdevimab or, for antibodies targeting relatively conserved regions, individually e.g. sotrovimab. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to detect emerging drug resistance in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the antibody epitopes and for casirivimab+imdevimab multiple mutations are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.

COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal/therapeutic use , Immunotherapy , Mutation , Antibodies, Neutralizing , Antibodies, Viral
Nat Commun ; 13(1): 1012, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-2275346


Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16-20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement.

COVID-19/prevention & control , Communicable Diseases, Imported/prevention & control , Quarantine/legislation & jurisprudence , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/transmission , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/transmission , Contact Tracing , England/epidemiology , Genome, Viral/genetics , Genomics , Health Impact Assessment , Humans , SARS-CoV-2/classification , Travel/legislation & jurisprudence , Travel-Related Illness
Virus Evol ; 8(2): veac080, 2022.
Article in English | MEDLINE | ID: covidwho-2051563


The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organization as Alpha. Originating in early autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK and the imposition of new restrictions, in particular, the English national lockdown in November 2020. While these interventions succeeded in reducing the absolute number of cases, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of the SARS-CoV-2 lineages that preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically infected individual. We conclude that the latter provides the best explanation of the observed behaviour and dynamics of the variant, although the individual need not be immunocompromised, as persistently infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs and find that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations and a lack of the rapid evolutionary rate on its ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms), it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.

Public Health ; 204: 21-24, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1586771


OBJECTIVES: Prisons are high-risk settings for infectious disease outbreaks because of their highly dynamic and crowded nature. During late 2020, prisons in England observed a surge in COVID-19 infection. This study describes the emergence of the Alpha variant in prisons during this period. METHODS: Alpha and non-Alpha variant COVID-19 cases were identified in prisoners in England using address-matched laboratory notifications and genomic information from COG-UK. RESULTS: Of 14,094 COVID-19-positive prisoner cases between 1 October 2020 and 28 March 2021, 11.5% (n = 1621) had sequencing results. Of these, 1082 (66.7%) were identified as the Alpha variant. Twenty-nine (2.7%) Alpha cases required hospitalisation compared with only five (1.0%; P = 0.02) non-Alpha cases. A total of 14 outbreaks were identified with the median attack rate higher for Alpha (17.9%, interquartile range [IQR] 3.2%-32.2%; P = 0.11) than non-Alpha outbreaks (3.5%, IQR 2.0%-10.2%). CONCLUSION: Higher attack rates and increased likelihood of hospitalisations were observed for Alpha cases compared with non-Alpha. This suggests a key contribution to the rise in cases, hospitalisations and outbreaks in prisons in the second wave. With prisons prone to COVID-19 outbreaks and the potential to act as reservoirs for variants of concern, sequencing of prison-associated cases alongside whole-institution vaccination should be prioritised.

COVID-19 , Prisoners , COVID-19/epidemiology , England/epidemiology , Humans , Prisons , SARS-CoV-2/genetics