ABSTRACT
BACKGROUND: Several studies suggest that far-field transmission (>6 ft) explains a significant number of COVID-19 superspreading outbreaks. OBJECTIVE: Therefore, quantifying the ratio of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. METHODS: In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 0.76 m (2.5 ft), 1.52 m (5 ft), 2.28 m (7.5 ft) from the participant, as well as in the exhaust plenum of the chamber. RESULTS: We observed that 0.76 m (2.5 ft) trials had ~36-44% higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field exposure relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 0.76 m, 1.52 m, and 2.28 m were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. SIGNIFICANCE: This study suggests that for rooms with similar airflow parameters disease transmission risk is dominated by near-field exposures for shorter event durations (e.g., initial 20-25-minutes of event) whereas far-field exposures are critical throughout the entire event and are increasingly more important for longer event durations. IMPACT STATEMENT: We offer a novel methodology for studying the fate and transport of airborne bioaerosols in indoor spaces using VOCs as unique proxies for bioaerosols. We provide evidence that real-time measurement of VOCs can be applied in settings with human subjects to estimate the concentration of bioaerosol at different distances from the emitter. We also improve upon the conventional assumption that a well-mixed room exhibits instantaneous and perfect mixing by addressing spatial distances and mixing over time. We quantitatively assessed the exposure levels to breath tracers at alternate distances and provided more insights into the changes on "near-field to far-field" ratios over time. This method can be used in future to estimate the benefits of alternate environmental conditions and occupant behaviors.
ABSTRACT
BACKGROUND: The influence of renin-angiotensin-aldosterone system (RAAS) inhibitors on the critically ill COVID-19 patients with pre-existing hypertension remains uncertain. This study examined the impact of previous use of angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB) on the critically ill COVID-19 patients. METHODS: Data from an international, prospective, observational cohort study involving 354 hospitals spanning 54 countries were included. A cohort of 737 COVID-19 patients with pre-existing hypertension admitted to intensive care units (ICUs) in 2020 were targeted. Multi-state survival analysis was performed to evaluate in-hospital mortality and hospital length of stay up to 90 days following ICU admission. RESULTS: A total of 737 patients were included-538 (73%) with pre-existing hypertension had received ACEi/ARBs before ICU admission, while 199 (27%) had not. Cox proportional hazards model showed that previous ACEi/ARB use was associated with a decreased hazard of in-hospital death (HR, 0.74, 95% CI 0.58-0.94). Sensitivity analysis adjusted for propensity scores showed similar results for hazards of death. The average length of hospital stay was longer in ACEi/ARB group with 21.2 days (95% CI 19.7-22.8 days) in ICU and 6.7 days (5.9-7.6 days) in general ward compared to non-ACEi/ARB group with 16.2 days (14.1-18.6 days) and 6.4 days (5.1-7.9 days), respectively. When analysed separately, results for ACEi or ARB patient groups were similar for both death and discharge. CONCLUSIONS: In critically ill COVID-19 patients with comorbid hypertension, use of ACEi/ARBs prior to ICU admission was associated with a reduced risk of in-hospital mortality following adjustment for baseline characteristics although patients with ACEi/ARB showed longer length of hospital stay. Clinical trial registration The registration number: ACTRN12620000421932; The date of registration: 30, March 2020; The URL of the registration: https://www.australianclinicaltrials.gov.au/anzctr/trial/ACTRN12620000421932 .
Subject(s)
COVID-19 , Hypertension , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Cohort Studies , Critical Illness , Hospital Mortality , Humans , Hypertension/diagnosis , Hypertension/drug therapy , Prospective Studies , Renin-Angiotensin System , Retrospective StudiesABSTRACT
Several studies suggest that far-field transmission (> 6 ft) explains the significant number of COVID-19 superspreading outbreaks. Therefore, quantitative evaluation of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 2.5 ft, 5 ft, 7.5 ft from the participant, as well as in the exhaust plenum of the chamber. We observed that 2.5 ft trials had substantially (~36-44%) higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 2.5 ft, 5 ft, and 7.5 ft were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. Our findings highlight the importance of far-field transmission of airborne pathogens including SARS-CoV-2, which need to be considered in public health decision making.