Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Lancet (London, England) ; 399(10331):1224-1224, 2022.
Article in English | EuropePMC | ID: covidwho-1761938
2.
Nature ; 603(7902): 679-686, 2022 03.
Article in English | MEDLINE | ID: covidwho-1638766

ABSTRACT

The SARS-CoV-2 epidemic in southern Africa has been characterized by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, while the second and third waves were driven by the Beta (B.1.351) and Delta (B.1.617.2) variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron, B.1.1.529) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, which are predicted to influence antibody neutralization and spike function4. Here we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Immune Evasion , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/immunology , Botswana/epidemiology , COVID-19/immunology , COVID-19/transmission , Humans , Models, Molecular , Mutation , Phylogeny , Recombination, Genetic , SARS-CoV-2/classification , SARS-CoV-2/immunology , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-296139

ABSTRACT

The Beta variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in South Africa in late 2020 and rapidly became the dominant variant, causing over 95% of infections in the country during and after the second epidemic wave. Here we show rapid replacement of the Beta variant by the Delta variant, a highly transmissible variant of concern (VOC) that emerged in India and subsequently spread around the world. The Delta variant was imported to South Africa primarily from India, spread rapidly in large monophyletic clusters to all provinces, and became dominant within three months of introduction. This was associated with a resurgence in community transmission, leading to a third wave which was associated with a high number of deaths. We estimated a growth advantage for the Delta variant in South Africa of 0.089 (95% confidence interval [CI] 0.084-0.093) per day which corresponds to a transmission advantage of 46% (95% CI 44-48) compared to the Beta variant. These data provide additional support for the increased transmissibility of the Delta variant relative to other VOC and highlight how dynamic shifts in the distribution of variants contribute to the ongoing public health threat.

4.
Nat Med ; 27(3): 440-446, 2021 03.
Article in English | MEDLINE | ID: covidwho-1319035

ABSTRACT

The first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in South Africa was identified on 5 March 2020, and by 26 March the country was in full lockdown (Oxford stringency index of 90)1. Despite the early response, by November 2020, over 785,000 people in South Africa were infected, which accounted for approximately 50% of all known African infections2. In this study, we analyzed 1,365 near whole genomes and report the identification of 16 new lineages of SARS-CoV-2 isolated between 6 March and 26 August 2020. Most of these lineages have unique mutations that have not been identified elsewhere. We also show that three lineages (B.1.1.54, B.1.1.56 and C.1) spread widely in South Africa during the first wave, comprising ~42% of all infections in the country at the time. The newly identified C lineage of SARS-CoV-2, C.1, which has 16 nucleotide mutations as compared with the original Wuhan sequence, including one amino acid change on the spike protein, D614G (ref. 3), was the most geographically widespread lineage in South Africa by the end of August 2020. An early South African-specific lineage, B.1.106, which was identified in April 2020 (ref. 4), became extinct after nosocomial outbreaks were controlled in KwaZulu-Natal Province. Our findings show that genomic surveillance can be implemented on a large scale in Africa to identify new lineages and inform measures to control the spread of SARS-CoV-2. Such genomic surveillance presented in this study has been shown to be crucial in the identification of the 501Y.V2 variant in South Africa in December 2020 (ref. 5).


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Datasets as Topic , Genome, Viral , Humans , Molecular Typing , Mutation , Pandemics , Phylogeny , Phylogeography , Real-Time Polymerase Chain Reaction , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , South Africa/epidemiology , Whole Genome Sequencing
5.
Nature ; 592(7854): 438-443, 2021 04.
Article in English | MEDLINE | ID: covidwho-1164876

ABSTRACT

Continued uncontrolled transmission of SARS-CoV-2 in many parts of the world is creating conditions for substantial evolutionary changes to the virus1,2. Here we describe a newly arisen lineage of SARS-CoV-2 (designated 501Y.V2; also known as B.1.351 or 20H) that is defined by eight mutations in the spike protein, including three substitutions (K417N, E484K and N501Y) at residues in its receptor-binding domain that may have functional importance3-5. This lineage was identified in South Africa after the first wave of the epidemic in a severely affected metropolitan area (Nelson Mandela Bay) that is located on the coast of the Eastern Cape province. This lineage spread rapidly, and became dominant in Eastern Cape, Western Cape and KwaZulu-Natal provinces within weeks. Although the full import of the mutations is yet to be determined, the genomic data-which show rapid expansion and displacement of other lineages in several regions-suggest that this lineage is associated with a selection advantage that most plausibly results from increased transmissibility or immune escape6-8.


Subject(s)
COVID-19/virology , Mutation , Phylogeny , Phylogeography , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , DNA Mutational Analysis , Evolution, Molecular , Genetic Fitness , Humans , Immune Evasion , Models, Molecular , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Selection, Genetic , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Time Factors
6.
Viruses ; 13(3)2021 03 22.
Article in English | MEDLINE | ID: covidwho-1154522

ABSTRACT

Cape Town was the first city in South Africa to experience the full impact of the coronavirus disease 2019 (COVID-19) pandemic. We acquired samples from all suspected cases and their contacts during the first month of the pandemic from Tygerberg Hospital. Nanopore sequencing generated SARS-CoV-2 whole genomes. Phylogenetic inference with maximum likelihood and Bayesian methods were used to determine lineages that seeded the local epidemic. Three patients were known to have travelled internationally and an outbreak was detected in a nearby supermarket. Sequencing of 50 samples produced 46 high-quality genomes. The sequences were classified as lineages: B, B.1, B.1.1.1, B.1.1.161, B.1.1.29, B.1.8, B.39, and B.40. All the sequences from persons under investigation (PUIs) in the supermarket outbreak (lineage B.1.8) fall within a clade from the Netherlands with good support (p > 0.9). In addition, a new mutation, 5209A>G, emerged within the Cape Town cluster. The molecular clock analysis suggests that this occurred around 13 March 2020 (95% confidence interval: 9-17 March). The phylogenetic reconstruction suggests at least nine early introductions of SARS-CoV-2 into Cape Town and an early localized transmission in a shopping environment. Genomic surveillance was successfully used to investigate and track the spread of early introductions of SARS-CoV-2 in Cape Town.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/physiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Disease Outbreaks , Female , Genome, Viral , Humans , Male , Middle Aged , Netherlands , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , South Africa/epidemiology , Travel , Whole Genome Sequencing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL