ABSTRACT
Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care.
ABSTRACT
Acute kidney injury (AKI) is a major health issue, the outcome of which depends primarily on damage and reparative processes of tubular epithelial cells. Mechanisms underlying AKI remain incompletely understood, specific therapies are lacking and monitoring the course of AKI in clinical routine is confined to measuring urine output and plasma levels of filtration markers. Here we demonstrate feasibility and potential of a novel approach to assess the cellular and molecular dynamics of AKI by establishing a robust urine-to-single cell RNA sequencing (scRNAseq) pipeline for excreted kidney cells via flow cytometry sorting. We analyzed 42,608 single cell transcriptomes of 40 urine samples from 32 patients with AKI and compared our data with reference material from human AKI post-mortem biopsies and published mouse data. We demonstrate that tubular epithelial cells transcriptomes mirror kidney pathology and reflect distinct injury and repair processes, including oxidative stress, inflammation, and tissue rearrangement. We also describe an AKI-specific abundant urinary excretion of adaptive progenitor-like cells. Thus, single cell transcriptomics of kidney cells excreted in urine provides noninvasive, unprecedented insight into cellular processes underlying AKI, thereby opening novel opportunities for target identification, AKI sub-categorization, and monitoring of natural disease course and interventions.
Subject(s)
Acute Kidney Injury , Humans , Mice , Animals , Acute Kidney Injury/pathology , Kidney/pathology , Biomarkers/urine , Oxidative Stress , Epithelial Cells/pathologyABSTRACT
Prolonged lung pathology has been associated with COVID-19, yet the cellular and molecular mechanisms behind this chronic inflammatory disease are poorly understood. In this study, we combine advanced imaging and spatial transcriptomics to shed light on the local immune response in severe COVID-19. We show that activated adventitial niches are crucial microenvironments contributing to the orchestration of prolonged lung immunopathology. Up-regulation of the chemokines CCL21 and CCL18 associates to endothelial-to-mesenchymal transition and tissue fibrosis within these niches. CCL21 over-expression additionally links to the local accumulation of T cells expressing the cognate receptor CCR7. These T cells are imprinted with an exhausted phenotype and form lymphoid aggregates that can organize in ectopic lymphoid structures. Our work proposes immune-stromal interaction mechanisms promoting a self-sustained and non-resolving local immune response that extends beyond active viral infection and perpetuates tissue remodeling.
Subject(s)
COVID-19 , Chemokine CCL21 , Chemokines, CC , Humans , COVID-19/immunology , Fibrosis , Lung , T-Lymphocytes/immunologyABSTRACT
BACKGROUND: Acute kidney injury (AKI) occurs frequently in critically ill patients and is associated with adverse outcomes. Cellular mechanisms underlying AKI and kidney cell responses to injury remain incompletely understood. METHODS: We performed single-nuclei transcriptomics, bulk transcriptomics, molecular imaging studies, and conventional histology on kidney tissues from 8 individuals with severe AKI (stage 2 or 3 according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria). Specimens were obtained within 1-2 h after individuals had succumbed to critical illness associated with respiratory infections, with 4 of 8 individuals diagnosed with COVID-19. Control kidney tissues were obtained post-mortem or after nephrectomy from individuals without AKI. RESULTS: High-depth single cell-resolved gene expression data of human kidneys affected by AKI revealed enrichment of novel injury-associated cell states within the major cell types of the tubular epithelium, in particular in proximal tubules, thick ascending limbs, and distal convoluted tubules. Four distinct, hierarchically interconnected injured cell states were distinguishable and characterized by transcriptome patterns associated with oxidative stress, hypoxia, interferon response, and epithelial-to-mesenchymal transition, respectively. Transcriptome differences between individuals with AKI were driven primarily by the cell type-specific abundance of these four injury subtypes rather than by private molecular responses. AKI-associated changes in gene expression between individuals with and without COVID-19 were similar. CONCLUSIONS: The study provides an extensive resource of the cell type-specific transcriptomic responses associated with critical illness-associated AKI in humans, highlighting recurrent disease-associated signatures and inter-individual heterogeneity. Personalized molecular disease assessment in human AKI may foster the development of tailored therapies.
Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/genetics , COVID-19/genetics , Critical Illness , Humans , Kidney , TranscriptomeABSTRACT
OBJECTIVES: To investigate the effect of extracorporeal cytokine reduction by CytoSorb (CytoSorbents, Monmouth Junction, NJ) on COVID-19-associated vasoplegic shock. DESIGN: Prospective, randomized controlled pilot study. SETTING: Eight ICUs at three sites of the tertiary-care university hospital Charité-Universitätsmedizin Berlin. PATIENTS: COVID-19 patients with vasoplegic shock requiring norepinephrine greater than 0.2 µg/kg/min, C-reactive protein greater than 100 mg/L, and indication for hemodialysis. INTERVENTIONS: Randomization of 1:1 to receive CytoSorb for 3-7 days or standard therapy. To account for inadvertent removal of antibiotics, patients in the treatment group received an additional dose at each adsorber change. MEASUREMENTS AND MAIN RESULTS: The primary endpoint was time until resolution of vasoplegic shock, estimated by Cox-regression. Secondary endpoints included mortality, interleukin-6 concentrations, and catecholamine requirements. The study was registered in the German Registry of Clinical Trials (DRKS00021447). From November 2020 to March 2021, 50 patients were enrolled. Twenty-three patients were randomized to receive CytoSorb and 26 patients to receive standard of care. One patient randomized to cytokine adsorption was excluded due to withdrawal of informed consent. Resolution of vasoplegic shock was observed in 13 of 23 patients (56.5%) in the CytoSorb and 12 of 26 patients (46.2%) in the control group after a median of 5 days (interquartile range [IQR], 4-5 d) and 4 days (IQR, 3-5 d). The hazard ratio (HR) for the primary endpoint, adjusted for the predefined variables age, gender, extracorporeal membrane oxygenation-therapy, or time from shock onset to study inclusion was HR, 1.23 (95% CI, 0.54-2.79); p = 0.63. The mortality rate was 78% in the CytoSorb and 73% in the control group (unadjusted HR, 1.17 [95% CI, 0.61-2.23]; p = 0.64). The effects on inflammatory markers, catecholamine requirements, and the type and rates of adverse events were similar between the groups. CONCLUSIONS: In severely ill COVID-19 patients, CytoSorb did not improve resolution of vasoplegic shock or predefined secondary endpoints.
Subject(s)
COVID-19 , Shock , COVID-19/therapy , Cytokines , Humans , Multiple Organ Failure/therapy , Norepinephrine , Pilot Projects , Prospective Studies , Research Design , Treatment OutcomeABSTRACT
BACKGROUND: Most COVID-19-associated mucormycosis (CAM) cases are reported from India and neighbouring countries. Anecdotally cases from Europe have been presented. OBJECTIVE: To estimate the disease burden and describe the clinical presentation of CAM in Germany. METHODS: We identified cases through German mycology networks and scientific societies, and collected anonymised clinical information via FungiScope®. RESULTS: We identified 13 CAM cases from six tertiary referral hospitals diagnosed between March 2020 and June 2021. Twelve patients had severe or critical COVID-19, eleven were mechanically ventilated for a median of 8 days (range 1-27 days) before diagnosis of CAM. Eleven patients received systemic corticosteroids. Additional underlying medical conditions were reported for all but one patient, five were immunocompromised because of malignancy or organ transplantation, three were diabetic. Eleven patients developed pneumonia. Mortality was 53.8% with a median time from diagnosis of mucormycosis to death of 9 days (range 0-214 days) despite treatment with liposomal amphotericin B and/or isavuconazole in 10 of 13 cases. CAM prevalence amongst hospitalised COVID-19 patients overall (0.67% and 0.58% in two centres) and those admitted to the intensive care unit (ICU) (1.47%, 1.78% and 0.15% in three centres) was significantly higher compared to non-COVID-19 patients (P < .001 for respective comparisons). CONCLUSION: COVID-19-associated mucormycosis is rare in Germany, mostly reported in patients with comorbidities and impaired immune system and severe COVID-19 treated in the ICU with high mortality compared to mainly rhino-orbito-cerebral CAM in patients with mild COVID-19 in India. Risk for CAM is higher in hospitalised COVID-19 patients than in other patients.
Subject(s)
COVID-19 , Mucormycosis , Antifungal Agents/therapeutic use , COVID-19/complications , Germany/epidemiology , Humans , Mucormycosis/diagnosis , Mucormycosis/drug therapy , Mucormycosis/epidemiology , Tertiary Care CentersABSTRACT
COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease.
Subject(s)
Biomarkers/analysis , COVID-19/pathology , Disease Progression , Proteome/physiology , Age Factors , Blood Cell Count , Blood Gas Analysis , Enzyme Activation , Humans , Inflammation/pathology , Machine Learning , Prognosis , Proteomics , SARS-CoV-2/immunologyABSTRACT
With an urgent need for bedside imaging of coronavirus disease 2019 (COVID-19), this study's main goal was to assess inter- and intraobserver agreement in lung ultrasound (LUS) of COVID-19 patients. In this single-center study we prospectively acquired and evaluated 100 recorded ten-second cine-loops in confirmed COVID-19 intensive care unit (ICU) patients. All loops were rated by ten observers with different subspeciality backgrounds for four times by each observer (400 loops overall) in a random sequence using a web-based rating tool. We analyzed inter- and intraobserver variability for specific pathologies and a semiquantitative LUS score. Interobserver agreement for both, identification of specific pathologies and assignment of LUS scores was fair to moderate (e.g., LUS score 1 Fleiss' κ = 0.27; subpleural consolidations Fleiss' κ = 0.59). Intraobserver agreement was mostly moderate to substantial with generally higher agreement for more distinct findings (e.g., lowest LUS score 0 vs. highest LUS score 3 (median Fleiss' κ = 0.71 vs. 0.79) or air bronchograms (median Fleiss' κ = 0.72)). Intraobserver consistency was relatively low for intermediate LUS scores (e.g. LUS Score 1 median Fleiss' κ = 0.52). We therefore conclude that more distinct LUS findings (e.g., air bronchograms, subpleural consolidations) may be more suitable for disease monitoring, especially with more than one investigator and that training material used for LUS in point-of-care ultrasound (POCUS) should pay refined attention to areas such as B-line quantification and differentiation of intermediate LUS scores.
Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Point-of-Care Systems , SARS-CoV-2 , COVID-19/therapy , Female , Humans , Male , Middle Aged , Monitoring, Physiologic , Observer Variation , Prospective Studies , UltrasonographyABSTRACT
INTRODUCTION: Acute kidney injury (AKI) is an important complication in COVID-19, but its precise etiology has not fully been elucidated. Insights into AKI mechanisms may be provided by analyzing the temporal associations of clinical parameters reflecting disease processes and AKI development. METHODS: We performed an observational cohort study of 223 consecutive COVID-19 patients treated at 3 sites of a tertiary care referral center to describe the evolvement of severe AKI (Kidney Disease: Improving Global Outcomes stage 3) and identify conditions promoting its development. Descriptive statistics and explanatory multivariable Cox regression modeling with clinical parameters as time-varying covariates were used to identify risk factors of severe AKI. RESULTS: Severe AKI developed in 70 of 223 patients (31%) with COVID-19, of which 95.7% required kidney replacement therapy. Patients with severe AKI were older, predominantly male, had more comorbidities, and displayed excess mortality. Severe AKI occurred exclusively in intensive care unit patients, and 97.3% of the patients developing severe AKI had respiratory failure. Mechanical ventilation, vasopressor therapy, and inflammatory markers (serum procalcitonin levels and leucocyte count) were independent time-varying risk factors of severe AKI. Increasing inflammatory markers displayed a close temporal association with the development of severe AKI. Sensitivity analysis on risk factors of AKI stage 2 and 3 combined confirmed these findings. CONCLUSION: Severe AKI in COVID-19 was tightly coupled with critical illness and systemic inflammation and was not observed in milder disease courses. These findings suggest that traditional systemic AKI mechanisms rather than kidney-specific processes contribute to severe AKI in COVID-19.
Subject(s)
Acute Kidney Injury/therapy , COVID-19/therapy , Glomerular Filtration Rate , Kidney/physiopathology , Renal Replacement Therapy , Acute Kidney Injury/etiology , Acute Kidney Injury/mortality , Acute Kidney Injury/physiopathology , Aged , COVID-19/complications , COVID-19/mortality , Female , Humans , Male , Recovery of Function , Renal Replacement Therapy/adverse effects , Renal Replacement Therapy/mortality , Retrospective Studies , Time Factors , Treatment OutcomeABSTRACT
OBJECTIVES: Approximately 8 - 10 % of COVID-19 patients present with a serious clinical course and need for hospitalization, 8% of hospitalized patients need ICU-treatment. Currently, no causal therapy is available and treatment is purely supportive. The main reason for death in critically ill patients is acute respiratory failure. However, in a number of patients a severe hyperinflammatory response with excessively elevated proinflammatory cytokines causes vasoplegic shock resistant to vasopressor therapy. A new polystyrene-based hemoadsorber (CytoSorb®, Cytosorbents Inc., New Jersey, USA) has been shown to adsorb effectively cytokines and other middle molecular weight toxins this way reducing their blood concentrations. This has been routinely used in clinical practice in the EU for other conditions where a cytokine storm occurs and an observational study has just been completed on COVID-19 patients. We hypothesized that the extracorporeal elimination of cytokines in critically ill COVID-19 patients with suspected hyperinflammation and shock may stabilize hemodynamics and improve outcome. The primary endpoint is time until resolution of vasoplegic shock, which is a well implemented, clinically relevant endpoint in critical care studies. TRIAL DESIGN: Phase IIb, multicenter, prospective, open-label, randomized, 1:1 parallel group pilot study comparing the additional use of "CytoSorb" to standard of care without "CytoSorb". PARTICIPANTS: Patients are recruited from the Intensive Care Units (ICUs) of 7 participating centers in Germany (approximately 10 ICUs). All patients aged 18- 80 with positive polymerase chain reaction (PCR) test for SARS-CoV-2, a C-reactive protein (CRP) ≥ 100 mg/l, a Procalcitonin (PCT) < 2 ng/l, and suspected cytokine storm defined via a vasoplegic shock (Norepinephrine > 0.2 µg/min/kg to achieve a Mean Arterial Pressure ≥ 65mmHg). Patients are included irrespective of indication for renal replacement therapy. Suspected or proven bacterial cause for vasoplegic shock is a contraindication. INTERVENTION AND COMPARATOR: Within 24 hours after meeting the inclusion criteria patients will be randomized to receive either standard of care or standard of care and additional "CytoSorb" therapy via a shaldon catheter for 3-7 days. Filter exchange is done every 24 hours. If patients receive antibiotics, an additional dose of antibiotics is administered after each change of "CytoSorb" filter in order to prevent underdosing due to "CytoSorb" treatment. MAIN OUTCOMES: Primary outcome is time to resolution of vasoplegic shock (defined as no need for vasopressors for at least 8 hours in order to sustain a MAP ≥ 65mmHg) in days. Secondary outcomes are 7 day mortality after fulfilling the inclusion criteria, mortality until hospital discharge, Interleukin-6 (IL-6) measurement on day 1 and 3, need for mechanical ventilation, duration of mechanical ventilation, duration of ICU-stay, catecholamine dose on day 1/2/3 after start of "CytoSorb" and acute kidney injury. RANDOMIZATION: An electronic randomization will be performed using the study software secuTrial® administered by the Clinical Study Center (CSC) of the Charité - Universitätsmedizin Berlin, Germany. Randomization is done in blocks by 4 stratified by including center. BLINDING (MASKING): The trial will be non-blinded for the clinicians and patients. The statistician will receive a blinded data set, so that all analyses will be conducted blinded. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): As this is a pilot study with the goal to examine the feasibility of the study design as well as the intervention effect, no formal sample size calculation was conducted. A total number of approximately 80-100 patients is planned (40-50 patients per group). Safety assessment is done after the inclusion of each 10 patients per randomization group. TRIAL STATUS: Please see the study protocol version from April 24 2020. Recruitment of patients is still pending. TRIAL REGISTRATION: The study was registered on April 27 2020 in the German Registry of Clinical Trials (DRKS) under the number DRKS00021447. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.